Oleinik's inequality for Lipschitz convex flux - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

Oleinik's inequality for Lipschitz convex flux

Stéphane Junca
Billel Guelmame
  • Fonction : Auteur
Didier Clamond
  • Fonction : Auteur

Résumé

This talk deals with the smoothing effect for entropy solutions of conservation laws with general nonlinear convex fluxes on $\mathbb{R}$. Beside convexity, no additional regularity is assumed on the flux. Thus, the well-known $BV$ smoothing effect for $C^2$ uniformly convex fluxes discovered independently by P. D. Lax and O. Oleinik is generalized for fluxes only locally Lipschitz. Therefore, the wave velocity can be discontinuous and the one-sided Oleinik inequality is lost. This inequality is usually the fundamental tool to get a sharp regularizing effect for the entropy solution. The wave velocity is modified in order to get an Oleinik inequality useful for a new modified wave front tracking algorithm. The unique entropy solution cannot be a function with bounded variation but belongs to a generalized BV space which depends only on the non-linearity of the flux.
Talk-Lipconv (2).pdf (3.5 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03548736 , version 1 (05-12-2022)

Identifiants

  • HAL Id : hal-03548736 , version 1

Citer

Stéphane Junca, Billel Guelmame, Didier Clamond. Oleinik's inequality for Lipschitz convex flux. Webinar on PDE ( partial differential equation ) and related areas, Shyam Sundar Ghoshal, Jan 2022, Bengaluru, India. ⟨hal-03548736⟩
72 Consultations
7 Téléchargements

Partager

More