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@ Generalized BV spaces: BVS and ¢-BV

© Smoothing effect for nonlinear convex C* flux
@ Oleinik's inequality revisited

© Lipschitz convex flux
@ Oleinik's inequality lost & recovered
@ Generalized inverse for a non decreasing function
@ Generalized Lax-Oleinik formula
@ Generalized characteristics

@ Nonconvex flux



BV space for conservation laws
Oru + Oy f(u) = 0, u(0,x) = w(x), t>0, xeR

@ propagation: TV u(t,.) < TV ug

@ smoothing for uniform convex C? flux [Lax & Oleinik,
1957] ug € L*>® = u(t,.) € BVisc

@ Compact embedding from BV to L} _

@ Regulated functions: Left and right traces everywhere.

@ Not all solutions in BV [K. S. Cheng JMAA 1983],...,
[Ghoshal-Jana SIMA 2020]

@ Compensated compactness for nonlinear flux [Tartar 1979]

Question (BV is not enough)

How to to quantify the compactness (regularity) of the
solutions?



Definition (generalised BV spaces, Muzielak-Orlicz 1959)

For a convex function (0) =0, r > 0= ®(r) >0

O-TVu = sup» & (|u(xasr) — u(xa)]),

BV* = p-BV = ®-BV, with ®(u) = |ulP,p=1,0<s<1
BV = BV C BV® C [=(=: BV).

BV-like properties.
@ ®-BV compactly embedded in L}

loc*

o If u e -BV, then u has traces everywhere.
@ Sobolev regularity, Ve > 0, BV* C WS

loc
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Theorem ( Propagation of ®-BV regularity )

Lipschitz flux,
O-TV u < P-TV 1y

@ BV* Bourdarias-Gisclon-J., JHDE 2014
@ $-BV Jenssen-Ridder, JHDE 2020
@ Numerical schemes:

e Godunov scheme 1959
e Glimm scheme 1969
e Wave Front Tracking algorithm Dafermos 1972



© Smoothing effect for nonlinear convex C* flux
@ Oleinik's inequality revisited



Nonlinear Flux

The most general: Nowhere linear on any non-empty open
interval Tartar 1972

Definition Power law nonlinearity p for C! flux
The flux has a p-power law nonlineratiy on [-M, M| if

Jp>1,3C > 0,¥(u,v) € [-M,M]* |f'(u) — f'(v)| = Clu — v|P
’u’P‘Fl

p+1

Example: Burgers p=1, f(u) =

The flux is necessary convex



Theorem (Smoothing for C! flux

with p-power law nonlinearity)

1
If up € L*(R) then, ¥t > 0, u(t,.) € BV (R),s = .

Nonlinear effect: O,u + c0, = u,

u(t, x) = up(x — c t) no smoothing effect
feC? f">0-— p=1, Lax & Oleinik 1957
f € Ct, p > 1, Bourdarias, Gisclon, J. 2014

Optimality: Castelli, J. 2014,
Ghoshal, Guelmame, Jana, J. 2020

shortest (best) proof: one-sided Oleinik inequality



one-sided Lipschitz Oleinik’s inequality

Oleinik 1957 rewritten by Hoff 1983

f'(u(t,x)) — f'(u(t,y)) < g a.e. x>y.

© It implies the Lax entropy inequality
no increasing velocity through a jump

@ Oleinik’s uniqueness proof

© bound the expansion of wave.

© Optimality: "=" for the Rarefaction Waves
Q '(u(t,.)) € BVioc



f/(u(t ))EB\//OC:>U( )EB

loc

(F'(u(t, x)) — F(u(t,y)))* < % vt = max(0, v)
Q@ f'(u(t,.)) € BVioc
TV*v[a, b] = sup D (vlxigr) = v(x)*

nelN, a<xp<x1<...<xp<b i<n
b—
TV*f/(u)[a, b] < ——2.
f'(u) € L* by the maximum principle |u| < ||up]|so

If vel®and TVTv < 0o then v € BV.

Q ’f’(ul) — f’(u2)‘ > C’U1 — u2|P
= for t > 0 u(t,.) € p-BVipe = BV},



© Lipschitz convex flux
@ Oleinik's inequality lost & recovered
@ Generalized inverse for a non decreasing function
@ Generalized Lax-Oleinik formula
@ Generalized characteristics



Oleinik inequality lost for Lipschitz flux

£t
t
f(u) = v*+ul ¢=-1 €=1
up(x) = sign(x)
F1(0) =7 f=-3u=AUTFO fi=c=3
u=-1 u=1




Recovering an Oleinik inequality

For the Riemann problem, f’ discontinuous at uy,

defi X — X#
U(t,X) = Uy, f, < é = F < €+

o(t,x) = f'(u(t, x)) when is well defined else:
U(t7X):€7 §—<€<€+a tgt*

Oleinik inequality for v: x <y, a.e.

o(t,y) —o(t, x) < y=x




Recovering an Oleinik inequality

For the Riemann problem, f’ discontinuous at uy,

defi X — X#
U(t,X) = Uy, f, < é = F < €+

o(t,x) = f'(u(t, x)) when is well defined else:
U(t7X):€7 §—<€<§+a tgt*

Oleinik inequality for v: x <y, a.e.

y—Xx

o(t,y) —o(t,x) <

u(t,x) = ()" (v(t,x)) ?



Generalized inverse for a non decreasing function

¢ : [a, b] — [c, d] non decreasing

generalized inverse, y € [c, d],

P (x) E inf{x € [a,b],y < p(x)}

1//

¢ C® & increasing = ¢ 1" is the usual inverse function

1//

¢ increasing < ¢ 1" continuous

¢ is constant on an intervall < ¢ ' has a jump
(P op)(x) < x
¢ 1" is right continuous



Generalized inverse for a step function

v




CO generalised inverse for increasing fct

v




Riemmann problem, f(u) = |u| + v?, ug(x) = sign(x)



Riemmann problem, f(u) = |u| + v?, ug(x) = sign(x)



Riemmann problem, f(u) = |u| + v?, ug(x) = sign(x)



Plan:

@ use a wave front tracking algorithm v ~ u,, v > 1
@ Get Oleinik inequality for v,
e v, € BV,

@ u € ®-BV since u = J(v) as a generalized

e Bruneau's decomposition of ®-BV function 1974
o Lax-Oleinik formula 1957



Plan:

@ use a wave front tracking algorithm v ~ u,, v > 1
@ Get Oleinik inequality for v,
® v, € BV

@ u € ®-BV since u = J(v) as a generalized

e Bruneau's decomposition of ®-BV function 1974
o Lax-Oleinik formula 1957

¢ =7



The convex function @, Castelli, J., JMAA 2017

® = upper convex envelope of (w[(f')~*"])" "

Q@ J = (f")""'" continuous since f strictly convex
@ 0 < w[J] modulus of continuity of J
Q0<o = (W™  ¢C°

Q¢ sup P < ¢
convex ¢, 0<v<é



Dafermos’ wave front tracking algorithm 1972

Uniform mesh u, € v 'Z, v > 1

e f < f, a piecewise linear flux.

efi k 1 k
s o (r(5+1) -7 (0))

on (k/v, (k + 1)/v) non-decreasing piece-wise constant

@ Uy <> Up, a piecewise constant approximation

Riemann problems: Contact Discontinuities & Shocks

ey, + Oxf(x) =0,  1,(0,x) = g, (x)



The velocity v, satisfies the Oleinik’s inequality

Initially, v, is defined for contact discontinuities to fill the
discontinuity of f] at (k/v) between the two fronts with
velocity sx_; and s.

When a shock interacts with one of the two contact
discontinuity front, the front disappears. v, is prolongated
between the shock and the remaining contact discontinuity

front.



Define v, contact Discontinuity, Shock




Define v, contact Discontinuity, Shock

=7




v, outsides waves
outside waves u, = cst constant
J(sk) = k/v by right continuity

@ between two contact discontinuities (CD) ,
v, is the speed of CD

@ between one contact disconuity and one shock,
v, is the speed of CD

@ between two shocks ,
v, = f'(cst)

u,(t, x) = J,(0,(t,x)) + O(1/v)



Regularity and compactness for v,

A priori, no uniqueness for v
@ space
e Uniform BV estimates : Oleinik’s inequality

o Compactness in L,oC and pointwise convergence

e Time regularity

e Finite speed and sup, TVv, < 00
yields v € Lip, oc(]0, +0], L. L o(R))

e Compactness in L} and pointwise convergence in space
and time

e From u,(t,x) =J,(0,(t,x)) + O(1/v)

u(t, x) = 3(v(t, x))



Generalized Lax-Oleinik formula
u(t,x) = J(v(t, x))

J, = (f)" = k/v on (sc_1, 5x) piecewise constant

v

u, =7J,(v,) +0O(1/v)

Locally [|J —J,|cc — 0 when v — +00

Dini Lemma for non decreasing functions



The classical Lax-Oleinik formula 1957

for smooth flux, historically f € C2, f” >0

(e = (1) (20,

t

y(t, x) non decreasing w.r.t. x defined by:

G(y(t,x)) :=min G(y),

6 = £ (72 + thtn),
*(v) = rpea]ﬁ((v u—f(u)), (F*) = (f)7!

o) = [ () o

to compare with u(t, x) = J(v(t, x))






Regularity for u from u(t,x) = J(v(t, x))

b € L[2c(10, +00], BVicioc(IR)) M Lipe joc (10, +-00], L joc (R))

@ In space: ©-TVu < TVv

@ Time regularity in Orlicz space:
u € Lip(]0, +oc], LY (R)), 0 < t; < to,

/ﬂ§¢<‘u(t1,x) — u(tz,x)Ddx <0 (1 + tll) |t — to

e Guelmame, J., Clamond, CMS 2019
e Jenssen, Ridder, JHDE 2020



Theorem (Smoothing for strictly convex flux

Guelmame, J., Clamond. CMS 2019, revisited 2022)

f strictly convex, 3 := (f')"~'" € C°, u entropy solution of,
Oru+ 0, f(u) =0, up € L=(R)
= u € L%(]0, +00], -BV e (R)) N Lippe((]0, +00], L® 1oc(R))
® = upper convex envelope of (w[J]) V"
Generalized Lax-Oleinik formula:
u(t,x) = J(v(t,x)) with v € L3.(]0, +00], BVioc(R))
®-TVu < TV, Oleinik's inequality: Ap < —



Generalized characteristics for Lipschitz flux

dxd(?_x) = (f" o u)(X(t; x)) not defined

@ v represents the waves speed but not unique

@ generalized characteristics
usually, BV framework & smooth flux Dafermos 1977

d X(t; x)
dt

defined A. F. Fillppov 1988 (in Russian 1985)
new qualitative results in $-BV?

=o(t, X(t,x)), X(0;x)=x

@ Hamilton Jacobi approach

@ to compare with Lagrangian representations
smooth flux, Bianchini, Marconi, ARMA 2017



Nonconvex flux

o f'(u) € BV [K.S. Cheng, JDE 1986]

e f'(u) ¢ BV [Marconi, JHDE 2018]

Theorem. [Marconi. 2018] C3 non convex flux, u € ¢-BV.
Example. f(u) = v u € BV for t > 0.

loc



Nonconvex flux

o f'(u) € BV [K.S. Cheng, JDE 1986]

Hidden assumptions:

f € C3 with polynomial expansion:

f(u) = co+cr(u—up)+- -+ ca(u—ug)?+ O(u— up)*t
e f'(u) ¢ BV [Marconi, JHDE 2018]

Theorem. [Marconi. 2018] C3 non convex flux, u € ¢-BV.
Example. f(u) = v, u € BV for t > 0.

loc



Nonconvex flux

o f'(u) € BV [K.S. Cheng, JDE 1986]
Hidden assumptions:
f € C3 with polynomial expansion:
f(u)=co+a(u—ug)+- -+ ca(u—up)?+ O(u— up)?™*
e f'(u) ¢ BV [Marconi, JHDE 2018]
2 counter-examples, f € C?
Theorem. [Marconi. 2018] C3 non convex flux, u € ¢-BV.
Example. f(u) = 13, ue BV for t > 0.

loc



AINIIARIN



	Generalized BV spaces: BVs and -BV
	Smoothing effect for nonlinear convex C1 flux
	 Oleinik's inequality revisited

	Lipschitz convex flux
	Oleinik's inequality lost & recovered
	Generalized inverse for a non decreasing function
	Generalized Lax-Oleinik formula 
	Generalized characteristics

	Nonconvex flux

