

- ① Generalized BV spaces: BV^s and Φ-BV
- 2 Smoothing effect for nonlinear convex C^1 flux
 - Oleinik's inequality revisited
- 3 Lipschitz convex flux
 - Oleinik's inequality lost & recovered
 - Generalized inverse for a non decreasing function
 - Generalized Lax-Oleinik formula
 - Generalized characteristics
- Nonconvex flux

BV space for conservation laws

$$\partial_t u + \partial_x f(u) = 0, \quad u(0,x) = u_0(x), \quad t > 0, x \in \mathbb{R}$$

- propagation: $TV \ u(t,.) \leqslant TV \ u_0$
- smoothing for uniform convex C^2 flux [Lax & Oleinik, 1957] $u_0 \in L^{\infty} \Rightarrow u(t,.) \in BV_{loc}$
- ullet Compact embedding from BV to L^1_{loc}
- Regulated functions: Left and right traces everywhere.
- Not all solutions in BV [K. S. Cheng JMAA 1983],...,
 [Ghoshal-Jana SIMA 2020]
- Compensated compactness for nonlinear flux [Tartar 1979]

Question (BV) is not enough

How to to quantify the compactness (regularity) of the solutions?

Definition (generalised BV spaces, Muzielak-Orlicz 1959)

For a convex function
$$\Phi(0) = 0$$
, $r > 0 \Rightarrow \Phi(r) > 0$

$$\Phi$$
-TV $u \stackrel{\text{defi}}{=} \sup_{\sigma} \sum_{n} \Phi(|u(x_{n+1}) - u(x_{n})|),$

$$BV^s = p - BV = \Phi - BV$$
, with $\Phi(u) = |u|^p$, $p = \frac{1}{s}$, $0 < s \le 1$
 $BV = BV^1 \subset BV^s \subset L^{\infty}(=:BV^0)$.

BV-like properties.

- Φ -BV compactly embedded in L^1_{loc} .
- If $u \in \Phi$ -BV, then u has traces everywhere.
- Sobolev regularity, $\forall \varepsilon > 0$, $BV^s \subset W_{loc}^{s-\varepsilon,1/s}$

$BV^s eq W^{s,1/s}$ on a bounded interval

$$H(x) = \begin{cases} 1, & x \geqslant 0, \\ 0, & x < 0. \end{cases}$$

Theorem (Propagation of Φ -BV regularity)

Lipschitz flux,

$$\Phi$$
- $TV u \leqslant \Phi$ - $TV u_0$

- BV^s Bourdarias-Gisclon-J., JHDE 2014
- Φ-BV Jenssen-Ridder, JHDE 2020
- Numerical schemes:
 - Godunov scheme 1959
 - Glimm scheme 1969
 - Wave Front Tracking algorithm Dafermos 1972

- ① Generalized BV spaces: BV^s and Φ -BV
- 2 Smoothing effect for nonlinear convex C^1 flux
 - Oleinik's inequality revisited
- Lipschitz convex flux
 - Oleinik's inequality lost & recovered
 - Generalized inverse for a non decreasing function
 - Generalized Lax-Oleinik formula
 - Generalized characteristics
- 4 Nonconvex flux

Nonlinear Flux

The most general: **Nowhere linear** on any non-empty open interval Tartar 1972

Definition Power law nonlinearity p for C^1 flux The flux has a p-power law nonlinearity on [-M, M] if

$$\exists p \geq 1, \exists C > 0, \forall (u, v) \in [-M, M]^2 \quad |f'(u) - f'(v)| \geqslant C|u - v|^p$$

Example: Burgers
$$p = 1$$
, $f(u) = \frac{|u|^{p+1}}{p+1}$

The flux is necessary convex

Theorem (Smoothing for C^1 flux with p-power law nonlinearity)

If
$$u_0 \in L^\infty(\mathbb{R})$$
 then, $\forall t > 0, \ u(t,.) \in BV^s_{loc}(\mathbb{R}), s = \frac{1}{\rho}$

- Nonlinear effect: $\partial_t u + c \partial_x = u$, $u(t,x) = u_0(x-c,t)$ no smoothing effect
- $f \in C^2$, $f'' > 0 \rightarrow p = 1$, Lax & Oleinik 1957
- $f \in C^1$, p > 1, Bourdarias, Gisclon, J. 2014
- Optimality: Castelli, J. 2014,
 Ghoshal, Guelmame, Jana, J. 2020
- shortest (best) proof: one-sided Oleinik inequality

one-sided Lipschitz Oleinik's inequality

Oleinik 1957 rewritten by Hoff 1983

$$f'(u(t,x)) - f'(u(t,y)) \leqslant \frac{x-y}{t}$$
 a.e. $x > y$.

- It implies the Lax entropy inequality no increasing velocity through a jump
- Oleinik's uniqueness proof
- bound the expansion of wave.
- Optimality: "=" for the Rarefaction Waves

$$f'(u(t,.)) \in BV_{loc} \Longrightarrow u(t,.) \in BV_{loc}^{s}$$

 $(f'(u(t,x)) - f'(u(t,y)))^{+} \leqslant \frac{x-y}{t}, \quad v^{+} = \max(0,v)$

- $|f'(u_1) f'(u_2)| \ge C|u_1 u_2|^p$ $\Rightarrow \text{ for } t > 0 \ u(t,.) \in p\text{-}BV_{loc} = BV_{loc}^s$

- ① Generalized BV spaces: BV^s and Φ -BV
- 2 Smoothing effect for nonlinear convex C¹ flux
 - Oleinik's inequality revisited
- 3 Lipschitz convex flux
 - Oleinik's inequality lost & recovered
 - Generalized inverse for a non decreasing function
 - Generalized Lax-Oleinik formula
 - Generalized characteristics
- 4 Nonconvex flux

Oleinik inequality lost for Lipschitz flux

$$\xi \stackrel{\text{defi}}{=} x/t,$$

$$f(u) = u^2 + |u|$$

$$u_0(x) = \operatorname{sign}(x).$$

$$f'(0) = ?$$

$$\xi = -3u = \frac{\xi+1}{2} \quad u = 0 \quad u = \frac{\xi-1}{2} \xi = 3$$

$$\overline{f'}(u) \stackrel{\text{defi}}{=} \frac{1}{2} (f'(u-0) + f'(u+0))$$

$$\overline{f'}(u(t,x)) - \overline{f'}(u(t,y)) > (x-y)/t$$

Recovering an Oleinik inequality

For the Riemann problem, f' discontinuous at $u_{\#}$,

$$u(t,x) = u_{\#}, \quad \xi_{-} \leqslant \xi \stackrel{\text{defi}}{=} \frac{x - x_{\#}}{t} \leqslant \xi_{+}$$

$$v(t,x) = f'(u(t,x))$$
 when is well defined else: $v(t,x) = \xi$, $\xi_- \leqslant \xi \leqslant \xi_+$, $t \leqslant t_*$

Oleinik inequality for v: x < y, a.e.

$$v(t,y)-v(t,x)\leq \frac{y-x}{t}$$

Recovering an Oleinik inequality

For the Riemann problem, f' discontinuous at $u_{\#}$,

$$u(t,x) = u_{\#}, \quad \xi_{-} \leqslant \xi \stackrel{\text{defi}}{=} \frac{x - x_{\#}}{t} \leqslant \xi_{+}$$

$$\mathfrak{v}(t,x) = f'(u(t,x))$$
 when is well defined else: $\mathfrak{v}(t,x) = \mathcal{E}, \quad \mathcal{E}_{-} \leqslant \mathcal{E} \leqslant \mathcal{E}_{+}, \quad t \leqslant t_{*}$

Oleinik inequality for v: x < y, a.e.

$$v(t,y)-v(t,x)\leq \frac{y-x}{t}$$

$$u(t,x) = (f')^{-1}(v(t,x))$$
?

Generalized inverse for a non decreasing function

 $\varphi: [a, b] \mapsto [c, d]$ non decreasing generalized inverse, $y \in [c, d]$,

$$\varphi$$
 "-1" $(x) \stackrel{\text{defi}}{=} \inf\{x \in [a, b], y \leq \varphi(x)\}$

- φ C^0 & increasing $\Rightarrow \varphi^{"-1''}$ is the usual inverse function
- φ increasing $\Leftrightarrow \varphi$ " $^{-1''}$ continuous
- φ is constant on an intervall $\Leftrightarrow \varphi$ "-1" has a jump
- $\bullet \ (\varphi^{"-1''} \circ \varphi)(x) \leqslant x$
- $\varphi^{"-1"}$ is right continuous

Generalized inverse for a step function

C^0 generalised inverse for increasing fct

$$u(t,x) = \mathfrak{I}(\mathfrak{v}(t,x))$$
 , $\mathfrak{I}=(f')^{"-1"}$

Riemmann problem, $f(u) = |u| + u^2$, $u_0(x) = sign(x)$

$$u(t,x) = \mathfrak{I}(\mathfrak{v}(t,x))$$
 , $\mathfrak{I}=(f')^{"-1"}$

Riemmann problem, $f(u) = |u| + u^2$, $u_0(x) = \text{sign}(x)$

$$u(t,x) = \mathfrak{I}(\mathfrak{v}(t,x))$$
, $\mathfrak{I}=(f')^{"-1}$

Riemmann problem, $f(u) = |u| + u^2$, $u_0(x) = \text{sign}(x)$

Plan:

- ullet use a wave front tracking algorithm $u \simeq u_
 u$, u > 1
- ullet Get Oleinik inequality for $\mathfrak{v}_{
 u}$
- $\mathfrak{v}_{\nu} \in BV_{loc}$
- $u \in \Phi$ -BV since $u = \Im(\mathfrak{v})$ as a generalized
 - Bruneau's decomposition of Φ-BV function 1974
 - Lax-Oleinik formula 1957

Plan:

- use a wave front tracking algorithm $u \simeq u_{\nu}, \ \nu > 1$
- ullet Get Oleinik inequality for $\mathfrak{v}_{
 u}$
- $\mathfrak{v}_{\nu} \in BV_{loc}$
- $u \in \Phi$ -BV since $u = \Im(\mathfrak{v})$ as a generalized
 - Bruneau's decomposition of Φ-BV function 1974
 - Lax-Oleinik formula 1957

Question

 $\Phi = ?$

$$\Phi \stackrel{\text{defi}}{=} \text{upper convex envelope of } (\omega[(f')^{"-1"}])^{"-1"}$$

- $\mathfrak{I} = (f')^{-1}$ continuous since f strictly convex
- **2** $0 \leqslant \omega[\mathfrak{I}]$ modulus of continuity of \mathfrak{I}

Dafermos' wave front tracking algorithm 1972

- Uniform mesh $u_{\nu} \in \nu^{-1}\mathbb{Z}$, $\nu \geqslant 1$
- $f \leftrightarrow f_{\nu}$ a piecewise linear flux.

$$f_{
u}' = s_k \stackrel{ ext{defi}}{=}
u \left(f \left(rac{k}{
u} + rac{1}{
u}
ight) - f \left(rac{k}{
u}
ight)
ight)$$

on (k/
u,(k+1)/
u) non-decreasing piece-wise constant

- $u_0 \leftrightarrow u_{0,\nu}$ a piecewise constant approximation
- Riemann problems: Contact Discontinuities & Shocks
- $\partial_t u_{\nu} + \partial_x f_{\nu}(x) = 0$, $u_{\nu}(0, x) = u_{0,\nu}(x)$

The velocity \mathfrak{v}_{ν} satisfies the Oleinik's inequality

Initially, \mathfrak{v}_{ν} is defined for contact discontinuities to fill the discontinuity of f'_{ν} at (k/ν) between the two fronts with velocity s_{k-1} and s_k .

When a shock interacts with one of the two contact discontinuity front, the front disappears. \mathfrak{v}_{ν} is prolongated between the shock and the remaining contact discontinuity front.

Define v_{ν} , contact Discontinuity, Shock

Define v_{ν} , contact Discontinuity, Shock

\mathfrak{v}_{ν} outsides waves

outside waves $u_{\nu} = cst$ constant

$$\Im(s_k) = k/\nu$$
 by right continuity

- between two contact discontinuities (CD) , \mathfrak{v}_{ν} is the speed of CD
- between one contact disconuity and one shock, \mathfrak{v}_{ν} is the speed of CD
- between two shocks , $\mathfrak{v}_{\nu}=f'(cst)$

$$u_{\nu}(t,x) = \mathfrak{I}_{\nu}(\mathfrak{v}_{\nu}(t,x)) + \mathfrak{O}(1/\nu)$$

Regularity and compactness for $\mathfrak{v}_{ u}$

A priori, no uniqueness for v

- space
 - Uniform BV estimates : Oleinik's inequality
 - ullet Compactness in L^1_{loc} and pointwise convergence
- Time regularity
 - Finite speed and $\sup_{\nu} TV \mathfrak{v}_{\nu} < \infty$ yields $\mathfrak{v} \in \operatorname{Lip}_{t,loc}(]0,+\infty], L^1_{x,loc}(\mathbb{R}))$
- Compactness in L_{loc}^1 and pointwise convergence in space and time
- ullet From $u_
 u(t,x)=\mathfrak{I}_
 u(\mathfrak{v}_
 u(t,x))+\mathfrak{O}(1/
 u)$

$$u(t,x) = \Im(\mathfrak{v}(t,x))$$

Generalized Lax-Oleinik formula

$$u(t,x)=\Im(\mathfrak{v}(t,x))$$

$$\mathfrak{I}_{
u}=(f_{
u}')^{ ilde{u}-1''}=k/
u$$
 on (s_{k-1},s_k) piecewise constant $u_{
u}=\mathfrak{I}_{
u}(\mathfrak{v}_{
u})+\mathfrak{O}(1/
u)$ Locally $\|\mathfrak{I}-\mathfrak{I}_{
u}\|_{\infty} o 0$ when $u o +\infty$

Dini Lemma for non decreasing functions

The classical Lax-Oleinik formula 1957

for smooth flux, historically $f \in C^2$, f'' > 0

$$u(t,x)=(f')^{-1}\left(\frac{x-y(t,x)}{t}\right),\,$$

y(t,x) non decreasing w.r.t. x defined by:

$$G(y(t,x)) := \min_{y \in \mathbb{R}} G(y),$$
 $G(y) := t f\left(\frac{x-y}{t}\right) + U_0(y),$
 $f^*(v) := \max_{u \in \mathbb{R}} (v \ u - f(u)), \qquad (f^*)' = (f')^{-1}$
 $U_0(x) := \int_{-\infty}^{\infty} u_0(y) \ dy$

to compare with $u(t,x) = \Im(v(t,x))$

$\Phi(\Delta u) \leqslant |\Delta v|$

$$u_{i} = u(t_{i}, x), \quad \mathfrak{v}_{i} = \mathfrak{v}(t_{i}, x), \quad u_{i} = \mathfrak{I}(\mathfrak{v}_{i})$$

$$\Phi(|u_{1} - u_{2}|) \leqslant \Phi(|\mathfrak{I}(\mathfrak{v}_{1}) - \mathfrak{I}(\mathfrak{v}_{2})|)$$

$$\leqslant \phi(|\mathfrak{I}(\mathfrak{v}_{1}) - \mathfrak{I}(\mathfrak{v}_{2})|)$$

$$\leqslant \phi(\omega[\mathfrak{I}](|\mathfrak{v}_{1} - \mathfrak{v}_{2}|))$$

$$\leqslant (\omega[\mathfrak{I}])^{"-1"} \circ \omega[\mathfrak{I}])(|\mathfrak{v}_{1} - \mathfrak{v}_{2}|)$$

$$\leqslant |\mathfrak{v}_{1} - \mathfrak{v}_{2}|.$$

Regularity for u from $u(t,x) = \Im(\mathfrak{v}(t,x))$

$$\mathfrak{v} \in L^{\infty}_{t,loc}(]0,+\infty], BV_{x,loc}(\mathbb{R})) \cap \mathsf{Lip}_{t,loc}(]0,+\infty], L^{1}_{x,loc}(\mathbb{R}))$$

- In space: Φ - $TVu \leq TVv$
- Time regularity in Orlicz space: $u \in \text{Lip}(]0, +\infty], L^{\Phi}_{loc}(\mathbb{R})), 0 < t_1 < t_2,$

$$\int_{\mathbb{R}} \Phi\Big(\big|u(t_1,x)-u(t_2,x)\big|\Big) \mathrm{d}x \leqslant \mathcal{O}\left(1+\frac{1}{t_1}\right)|t_1-t_2|$$

- Guelmame, J., Clamond, CMS 2019
- Jenssen, Ridder, JHDE 2020

Theorem (Smoothing for strictly convex flux

Guelmame, J., Clamond. CMS 2019, revisited 2022)

f strictly convex, $\mathfrak{I}:=(f')^{``-1''}\in C^0$, u entropy solution of,

$$\partial_t u + \partial_x f(u) = 0, \qquad u_0 \in L^{\infty}(\mathbb{R})$$

$$\Rightarrow u \in L^{\infty}_{loc}(]0,+\infty], \frac{\Phi - BV}{loc}(\mathbb{R})) \cap Lip_{loc}((]0,+\infty], \frac{L^{\Phi}}{loc}(\mathbb{R}))$$

 $\Phi \stackrel{\scriptscriptstyle defi}{=} upper convex envelope of (\omega[\mathfrak{I}])^{"-1"}$

Generalized Lax-Oleinik formula:

$$u(t,x) = \Im(v(t,x))$$
 with $v \in L^{\infty}_{loc}(]0,+\infty]$, $BV_{loc}(\mathbb{R})$)
 Φ - $TVu \leqslant TVv$, Oleinik's inequality: $\Delta v \leqslant \frac{\Delta x}{t}$

Generalized characteristics for Lipschitz flux

$$\frac{d X(t;x)}{d t} = (\mathbf{f}' \circ \mathbf{u})(X(t;x))$$
 not defined

- v represents the waves speed but not unique
- generalized characteristics usually, BV framework & smooth flux Dafermos 1977

$$\frac{d X(t;x)}{d t} = \mathfrak{v}(t,X(t,x)), \quad X(0;x) = x$$

defined A. F. Fillppov 1988 (in Russian 1985) new qualitative results in Φ -BV?

- Hamilton Jacobi approach
- to compare with Lagrangian representations smooth flux, Bianchini, Marconi, ARMA 2017

Nonconvex flux

ullet $f'(u) \in BV$ [K.S. Cheng, JDE 1986]

• $f'(u) \notin BV$ [Marconi, JHDE 2018]

Theorem. [Marconi. 2018] C^3 non convex flux, $u \in \Phi$ -BV. Example. $f(u) = u^3$, $u \in BV_{loc}^{1/2}$ for t > 0.

Nonconvex flux

- $f'(u) \in BV$ [K.S. Cheng, JDE 1986] Hidden assumptions: $f \in C^3$ with polynomial expansion: $f(u) = c_0 + c_1(u - u_0) + \cdots + c_d(u - u_0)^d + O(u - u_0)^{d+1}$
- $f'(u) \notin BV$ [Marconi, JHDE 2018]

Theorem. [Marconi. 2018] C^3 non convex flux, $u \in \Phi$ -BV. Example. $f(u) = u^3$, $u \in BV_{loc}^{1/2}$ for t > 0.

Nonconvex flux

- $f'(u) \in BV$ [K.S. Cheng, JDE 1986] Hidden assumptions: $f \in C^3$ with polynomial expansion: $f(u) = c_0 + c_1(u - u_0) + \cdots + c_d(u - u_0)^d + O(u - u_0)^{d+1}$
- $f'(u) \notin BV$ [Marconi, JHDE 2018] 2 counter-examples, $f \in C^2$

Theorem. [Marconi. 2018] C^3 non convex flux, $u \in \Phi$ -BV. Example. $f(u) = u^3$, $u \in BV_{loc}^{1/2}$ for t > 0.

ಧನ್ಯವಾದ धन्यवाद ধন্যবাদ