Order-Based Identification of Bearing Defects under Variable Speed Condition
Résumé
Condition monitoring of rotating machinery plays an important role in reducing catastrophic failures and production losses in the 4.0 Industry. Vibration analysis has proven to be effective in diagnosing rotating machine failures. However, identifying bearing defects based on vibration analysis remains a difficult task, especially in non-stationary operation conditions. This work aims to automate the process of identifying bearing defects under variable operating speeds. Based on an order analysis technique, three frequency domain features: Spectrum peak Ratio Outer (SPRO), Spectrum peak Ratio Inner (SPRI), and Spectrum peak Ratio Rolling element (SPRR) are updated to perform with non-stationary signals. The updated features are extracted from vibration data of a real ball bearing system. They are retained to build a predictive multi-kernel support vector machine (MSVM) classification model. Therefore, the effectiveness of the proposed features is evaluated based on the performance of the constructed classifier. The updated features deployed have proven their effectiveness in identifying bearing: outer race, inner race, ball, and combined defects under variable speed conditions.
Domaines
Sciences de l'ingénieur [physics]Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|---|
Licence |