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Abstract: Condition monitoring of rotating machinery plays an important role in reducing catas-
trophic failures and production losses in the 4.0 Industry. Vibration analysis has proven to be effective
in diagnosing rotating machine failures. However, identifying bearing defects based on vibration
analysis remains a difficult task, especially in non-stationary operation conditions. This work aims
to automate the process of identifying bearing defects under variable operating speeds. Based on
an order analysis technique, three frequency domain features: Spectrum peak Ratio Outer (SPRO),
Spectrum peak Ratio Inner (SPRI), and Spectrum peak Ratio Rolling element (SPRR) are updated to
perform with non-stationary signals. The updated features are extracted from vibration data of a real
ball bearing system. They are retained to build a predictive multi-kernel support vector machine
(MSVM) classification model. Therefore, the effectiveness of the proposed features is evaluated based
on the performance of the constructed classifier. The updated features deployed have proven their
effectiveness in identifying bearing: outer race, inner race, ball, and combined defects under variable
speed conditions.

Keywords: bearing; vibration analysis; defects identification; variable speed; classification

1. Introduction

Machines in the 4.0 industry are becoming progressively complex, making their
vibration signals analysis a challenging task, even for vibration diagnostic experts [1].

Bearings are recognized as critical components in industrial machinery. Thus, master-
ing their vibration behavior can significantly enhance the diagnostic process. The vibration
signal of a defective bearing operating under stationary conditions can be considered as
an amplitude modulated waveform [2]. This makes the envelope analysis (EA) one of the
most effective methods for bearings health monitoring in stationary conditions [3]. At a
constant operating speed, the impulses of bearing defects occur periodically with a known
frequency, namely the bearing defect characteristic frequencies. Here, the diagnostic expert
relies on the frequency spectrum of the signal being diagnosed to check the existence
of the defect frequencies. Three EA-based features: SPRO, SPRI, and SPRR associated
with the three common bearing defects (outer race, inner race, and ball defect) have been
applied successfully in the literature and proven their effectiveness in the characterization
of localized bearing defects in stationary conditions [4,5].

In a real application, the operating speed of rotating machines is usually variable. The
vibration impulses resulting from a localized bearing defect are therefore no longer periodic.
EA as well as any other method based on the assumption of a constant rotational speed are
therefore non-applicable. Order tracking methods are considered to be among the most
powerful algorithms used to eliminate the effect of speed fluctuation [6]. The latter converts
the non-stationary signals in the time domain into stationary ones in the angular domain [5],

Appl. Sci. 2021, 11, 3962. https://doi.org/10.3390/app11093962 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-0406-3706
https://orcid.org/0000-0002-5685-1694
https://doi.org/10.3390/app11093962
https://doi.org/10.3390/app11093962
https://doi.org/10.3390/app11093962
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11093962
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11093962?type=check_update&version=2


Appl. Sci. 2021, 11, 3962 2 of 13

making Fourier transform-based analysis techniques applicable again. Order tracking
methods are divided into two main types: with or without speed measuring devices, such
as encoders and tachometers. It is important to note that in the case of available speed
measurement, order tracking is usually performed with fairly high accuracy [2].

Despite their effectiveness in characterizing bearing defects in non-stationary operations,
the use of order tracking methods is still reserved for diagnostic experts. A specialist can
easily track the differences between the envelope order spectra corresponding to different
bearing defects, which can be a difficult task for inexperienced operators. Machine learning
algorithms (MLA) are increasingly being used as an effective solution for processing vibration
signals [7]. Hotait et al. updated the unsupervised classifier Optics (Ordering Points to
Identify the clustering structure) to provide real-time detection of bearing defects based on
vibration monitoring. Farhat et al. [8] used two supervised machine learning classifiers: Multi
kernel support vector machines (MSVM) and K-nearest neighbors (KNN), to determine the
severity of a bearing outer race defect in a shaft bearing system. In many other studies [9–11],
several kinds of MLAs are also applied to automate the detection and/or the characterization
of the severity of bearing defects. However, there is no literature that deals with the automatic
identification of bearing defects at variable speeds.

This work aims to automate the identification of bearing defects under variable speed
conditions. Vibration data collected from real bearings with different health states operating
under variable speed are considered to validate the proposed approach. Based on an order
analysis technique, the three features associated with bearing defects: SPRO, SPRI, and
SPRR are updated to perform with non-stationary signals. These are extracted from the
considered vibration signals and used to build a predictive classification model for the
MLA-classifier: MSVM [8]. The constructed classification model has proven to be effective
in the identification of bearing defects under variable speed conditions, confirming the
performance of the proposed features.

The paper is organized as follows. The updated feature expressions are detailed
in Section 2. The experimental system used and the methodology carried out for the
identification of the defect are discussed in Section 3. Conclusions and perspectives are
presented in Section 4.

2. Update of SPRO SPRI and SPRR Features

Under stationary operating conditions, the impulses characterizing a bearing defect
occur with a constant frequency. The characteristic frequency of an outer race defect (fo),
an inner race defect (fi), and a ball defect (fb) are given respectively by:

fo =
Nb
2

fr

(
1 +

dball
Dm

. cos(α)
)

(1)

fi =
Nb
2

fr

(
1− dball

Dm
. cos(α)

)
(2)

fb =
Dm

2 dball
fr

(
1−

(
dball
Dm

. cos(α)
)2
)

(3)

where fr is the rotation frequency of the shaft , Nb, dball, and, Dm present respectively the
number of balls, the ball diameter, and the pitch diameter of the bearing. α is the contact
angle of the bearing, (α = 0 for the bearing considered in this work).

The frequency spectrum of an outer race defect is dominated by fo and its harmonics.
Similarly, an inner race defect (resp. ball defect) spectrum includes fi (resp. fb), its harmon-
ics, but also sidebands corresponding to the rotation frequency of the inner race (resp. the
cage) distributed around the defect frequency. SPRO, SPRI, and SPRR identify defects in
the outer race, the inner race, and the ball, respectively. They are obtained by dividing the
sum of peaks corresponding to the defect (fundamental and harmonics) by the sum of all
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peaks in the frequency spectrum. The returned value will therefore reflect the probability
of the presence of defects. They are given by:

SPRO =
K ∑H

i=1 pO(h)

∑K
k=1 s(k)

(4)

SPRI =
K ∑H

i=1 pI(h)

∑K
k=1 s(k)

(5)

SPRR =
K ∑H

i=1 pR(h)

∑K
k=1 s(k)

(6)

s(k) is the frequency spectrum with k ∈ (1, 2 . . . K). K is the number of lines in the fre-
quency spectrum. pO(h), pI(h), and pR(h) are, the peak values of the hth harmonics of fo, fi,
and fb, respectively, with h ∈ (1, 2 . . . H). H is the number of harmonics corresponding to
the defect.

SPRO, SPRI, and SPRR are derived from the frequency-domain feature SPR (Spectrum
Peak Ratio) proposed by Shiroishi et al. [3], which has proven its effectiveness in the
characterization of bearing localized defects under stationary operating conditions [3].
Referring to [12], under variable speed, bearing defect frequencies are time-varying. The
conventional EA is therefore no longer suitable for the identification of bearing defects
(problem of frequency smearing). Envelope order tracking is used in this work as an
alternative to the conventional EA method. Based on a constant angular increment re-
sampling, the non-stationary signal in the frequency domain transforms into a stationary
signal in the order domain. Each defect is therefore now characterized by a constant order
value whatever the rotation speed. The order is defined as the frequency normalized by
the shaft speed [13], given by:

l =
60 fr

n
(7)

where l is the order, fr (Hz) represents the frequency of the shaft, and n (rev/min) denotes
the shaft rotating speed.

The order values associated with the three considered bearing defects are respectively:
the outer race ball pass order (Io), the inner race ball pass order (Ii), and the ball spin order
(Ib). They are expressed by:

Io =
Nb
2

(
1− dball

Dm
cos(α)

)
(8)

Ii =
Nb
2

(
1 +

dball
Dm

cos(α)
)

(9)

Ib =
Nb Dm

2 dball

(
1− d2

ball

D2
m

cos(α)

)
(10)

To deal with speed variation, the expressions of: SPRO, SPRI, and SPRR are updated
as given in Equations (11)–(13). The updated features: SPROa, SPRIa, and SPRRa are now
extracted from the order domain instead of the frequency domain. They are obtained by
dividing the sum of the defect peaks (fundamental and harmonics) by the sum of all peaks
in the order spectrum. Considering the stationarity of the orders of bearing defects under
variable speed, the updated features can reflect the probability of the presence of the defects
regardless of the operating speed conditions.

SPROa =
K ∑H

i=1 OO(u)

∑R
r=1 J(r)

(11)
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SPROa =
K ∑H

i=1 OI(u)

∑R
r=1 J(r)

(12)

SPRRa =
K ∑U

u=1 OR(u)

∑R
r=1 J(r)

(13)

J(r) is the order spectrum with r ∈ (1, 2 . . . R). R is the number of lines in the
spectrum. OO(u), OI(u), and OR(u) are, the peak values of the uth harmonic of fo, fi, and fb
respectively, with u ∈ (1, 2 . . . U). U is the number of the order harmonics corresponding
to the defect.

3. Validation of the Proposed Features

This part is devoted to studying the effectiveness of the proposed (updated) features
in identifying bearing defects under variable speed conditions. A predictive (MSVM)
classification model is built based on the updated features (SPROa, SPRIa, and SPRRa).
The latter is trained and tested based on vibration signals of real bearings operating under
variable speed conditions.

3.1. Experimental Setup

Referring to [14], the experiments are carried out on the bearing fault simulator test
bench (MFS-PK5M) presented in Figure 1.

Figure 1. The experimental setup. Reproduced with permission from [14], Elsevier, 2021.

It consists of a rotating shaft driven by an AC drive-controlled motor and supported
by two ball bearings type ER16K. The motor-side bearing is considered to be healthy.
The right-side bearing is considered to be the experimental one, replaced by bearings of
different health states. Vibrations are acquired using an ICP accelerometer, model 623C01
placed in the housing of the experimental bearing radially in the vertical direction as shown
in Figure 1. The shaft rotation speed is acquired using an EPC 775 incremental encoder. The
data considered correspond to an experimental bearing with: (i) healthy state, (ii) localized
inner race defect, (iii) localized outer race defect, (iv) localized ball defect, and (v) combined
defects on the inner race, the outer race and the ball, operating under (i) speed increase,
(ii) speed decrease, (iii) speed increase and then decrease, and (iv) speed decrease then
increase conditions.

In total, 60 vibration signals sampled at 200,000 Hz with a duration of 10 s each are
considered in this study, i.e., 12 data sets for each health condition (4 signals are available
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for each operating speed condition). Signals can be found in [14]. A detailed description of
the acquired signals is available in [14].

Table 1 summarizes the characteristics of the bearings used in the experiments and gives
the characteristic frequencies fo, fi and fb as a function of the shaft rotation frequency fr.

Table 1. Parameters of the bearing.

Type Pitch Diameter Ball Diameter Number of Balls fo fi fb

ER16K 38.52 mm 7.94 mm 9 3.57 fr 5.43 fr 2.32 fr

3.2. Methodology

Figure 2 outlines the approach taken to evaluate the ability of the proposed features to
classify bearing defects in non-stationary conditions.

Figure 2. Methodology of bearing defects identification.

To verify their effectiveness, the proposed features will be considered as inputs to the
supervised MLA classifier MSVM. The effectiveness of these features in identifying bearing
defects in the non-stationary condition is therefore evaluated through the classification results.
Before engaging the feature extraction, the acquired data are submitted to a pre-processing
step to provide more useful information (reduction of background noise and measurement
errors). Referring to [12], spectral kurtosis is used in this work as a powerful tool to determine
the optimal band for the passband filter, allowing to further reveal the defect impulses in the
vibration signals. Once all samples are pre-processed, the extraction of SPROa, SPRIa, and
SPRRa is performed. 50% of the data is used to build a predictive MSVM classification model.
Then, the classification efficiency is tested on the remaining 50%.
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3.3. Results and Discussion

As mentioned in Section 3.1, the datasets considered in this work consist of 60 vibration
signals of 10 s each corresponding to bearings with different health states operating under
variable operating speed conditions.

Preprocessing and feature extraction processes are further clarified in this section
using the vibration signal shown in Figure 3. The latter corresponds to the vibration data
collected from a faulty bearing with an outer race defect operating under a rotational speed
decreasing from 25.4 Hz to 10.3 Hz.

Figure 3. Raw vibration signal of a faulty bearing with an outer race defect, (Rotation speed decreas-
ing from 25.4 Hz to 10.3 Hz).

3.3.1. Pre-Processing

The raw vibration signal presented in Figure 3 shows the presence of the defect impulses,
however, these are mostly masked by the noise. As mentioned in Section 3.2, spectral kurtosis
is used to determine the frequency band dominated by the defect excitations. This information
is needed to define the optimal frequency range to the passband filter. The Kurtogram of the
considered vibration signal is given in Figure 4.

Figure 5 shows the filtered signal obtained by applying a bandpass filter at the optimal
frequency band determined by SK. The defect impulses are now clearer and less masked
by noise, making the signal more suitable for feature extraction.

3.3.2. Features Extraction

The proposed features expressed in Equations (11)–(13) are extracted directly from
the order domain. A transformation of the signal from time to order domain is therefore
required. The order tracking method used in this work is based on the availability of an
encoder speed measurement. The signals acquired with a uniform ∆t are resampled in the
angular domain based on a digital adaptive resampling algorithm. The ∆t uniform data are
therefore transformed into uniformly angle spaced data. To carry out the transformation
from the time domain to the angular domain, a reference signal is required to define the
uniform angular intervals. Generally, this reference signal is taken as the tachometer signal
measured on the bearing drive shaft. The signal resampling process carried out in this
work can be summarized as follows: (i) a tachometer signal is derived from an available
encoder signal and used as a phase increment reference to obtain the even-angle sampling
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time marks. (ii) An interpolation scheme is used to achieve an even-angle sampling of
the considered time series according to the tachometer time marks. (iii) Order spectrum
analysis is used to extract features from the even-angle data.

Figure 4. Kurtogram of the faulty bearing vibration signal.

Figure 5. Filtered vibration signal of the faulty bearing.

Figure 6a,b show respectively the tacho-pulses and the speed profile corresponding
to the vibration signal of the defective bearing with the outer race defect studied in the
previous section. These latter are derived directly from the acquired encoder signal.
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Figure 6. Resampling of the bearing vibration signal; (a) Tacho pulses; (b) Speed profile; (c) Resam-
pled signal.

As explained before, an even-angle sampling of the considered bearing vibration
signal is carried out according to the tachometer time marks. The resampled signal is
shown in Figure 6c, indicating equidistant defect impulses (in contrast to those in Figure 3).
This confirms the stationarity of the re-sampled signal in the angular domain. It should be
pointed out that the abscissa of the resampled signal is no longer the time, but the rotation
angle of the shaft in revolutions.

An ordinary envelop spectrogram of the raw time signal in focus is calculated referring
to [12] and displayed in Figure 7a. The latter indicates the presence of outer race defect
frequency fo = 3.57× fr and its harmonics. This frequency varies according to the shaft
rotational speed. Figure 7b, on the other hand, shows the envelope order spectrogram
obtained based on the resampled envelope of the time signal in the angular domain. It is
clear that the defect order values (Oo = 3.57 and its harmonics) are constant regardless of
the operation speed, confirming the robustness of the expressions of the updated features
under variable speed conditions. As explained in Section 2, SPROa, SPRIa, and SPRRa are
directly extracted from the envelope order spectrum of the signal. The envelope order
spectrum of the signal in focus is given in Figure 8. It is dominated by the order of the
outer race defect and its harmonics, confirming the efficiency of the proposed features.
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Figure 7. Envelop spectrogram of the faulty bearing signal, (a) frequency domain, (b) order domain.

Figure 8. Envelop order spectrum of the faulty bearing signal.

3.3.3. Classification

To perform the classification process, the acquired vibration signal described in Section 3.1
are regrouped according to their corresponding health state, regardless of the operation speed
condition. 12 signals of 10 s are thus considered for each health state. To increase the number
of samples, the 10 s signals are divided into 5 samples of 2 s each. Thus, a total of 60 samples
are considered for each condition:

� Healthy bearing (H)
� Faulty bearing with an outer race defect (ORD)
� Faulty bearing with an inner race defect (IRD)
� Faulty bearing with a ball defect (BD)
� Faulty bearing with combined outer race, inner race, and ball defects (CD)

Figure 9a,b shows the 3D space representation of the acquired pre-processed data as a
function of the conventional features (SPRO, SPRI, and SPRR) and the updated features
(SPROa, SPRIa, and SPRRa) respectively. All features are normalized using the standard
MATLAB function “range”. This function normalizes the computed features to an interval
[0,1] to ensure a clear graphical representation of the data.
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Figure 9. Space representation of the acquired pre-processed data: (a) as a function of the conventional
features; (b) as a function of the updated features.

It can be noted that in the case of the conventional features used, there is an overlap
between the data representing each health state. On the other hand, with the updated
features the separation between the data corresponding to different health states is obvious.
This confirms the ability of the proposed features to separate between bearing defects.

An MSVM-based classification is investigated to confirm the relevance of the proposed
features in the identification of bearing defects under variable speed conditions. All samples
considered have been pre-processed as explained in the previous section and used in the
extraction of the updated features. 50% of the extracted features corresponding to each
health state have been used to build (train) the predictive MSVM classification model. Then,
the constructed model is tested against the remaining 50% of the data. The classification
result is given in Figure 10. To highlight the necessity of the pre-processing step, another
MSVM classification model is trained and tested based on the raw signals (50% for training
and 50% for testing). The result of the raw data classification is given in Figure 11.

Figure 10. Space representation of the tested 50% of pre-processed data as predicted by the (MSVM)
classifier: (a) using the non-updated features; (b) using the updated ones.
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Figure 11. Space representation of the tested 50% of raw data as predicted by the (MSVM) classifier:
(a) using the non-updated features; (b) using the updated ones.

Confusion matrices, Tables 2 and 3, are adopted to evaluate the performance of the
MSVM classifier in the case of conventional and updated features extracted from raw
and pre-processed signals respectively. The present study is performed in the balanced
class case which makes the accuracy of classification sufficient criterion to evaluate the
classifier performance. The classification accuracy is achieved as shown in Equation (14),
by counting the data labeled as true positives TP, true negatives TN, false positives FP, and
false negatives FN.

Accuracy =
TP + TN

TP + TN + FP + FN
(14)

Table 2. Confusion matrices for the case of raw data: (a) using conventional features; (b) using updated features.

Actual
(a), Accuracy = 0.32

Actual
(b), Accuracy = 0.79

Predicted Predicted

class H ORD IRD BD CD class H ORD IRD BD CD

H 4 0 4 21 1 H 26 0 1 3 0
ORD 0 3 6 18 3 ORD 1 23 0 6 0
IRD 3 1 20 6 0 IRD 0 0 23 1 6
BD 4 5 0 19 2 BD 0 2 2 24 2
CD 0 2 22 4 2 CD 0 0 0 7 23

Table 3. Confusion matrices for the case of pre-processed data: (a) using conventional features; (b) using updated features.

Actual
(a), Accuracy = 0.37

Actual
(b), Accuracy = 0.87

Predicted Predicted

class H ORD IRD BD CD class H ORD IRD BD CD

H 11 9 0 8 2 H 28 0 1 1 0
ORD 7 13 0 9 1 ORD 2 26 0 2 0
IRD 0 5 13 9 3 IRD 0 0 24 2 4
BD 6 10 0 12 2 BD 0 0 0 26 4
CD 5 12 0 6 7 CD 0 0 0 3 27

The updated features based MSVM classifier built has successfully identified the
correct type of the bearing defects for over 87% of the tested pre-processed data and
over 79% for the raw data, whereas with the non-updated features, the accuracy of the
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classification only reached 37% for the pre-processed data and 32% for the raw data.
Confirming the performance of the updated features in identifying bearing defects in
variable speed and the necessity of the pre-processing step.

4. Conclusions

In this work, an original approach is investigated to identify bearing defects under
variable speed conditions. The expressions of three features associated with bearing:
outer race, inner race, and ball defects are updated based on an order tracking technique.
These are extracted from the vibration signals of bearings with different states of health
operating under variable speed conditions. The extracted features are used to build a
predictive classification model for the supervised classifier MSVM. The latter has proven to
be effective in the identification of bearing defects in variable speed conditions, confirming
the performance of the proposed features.

In the following works, the proposed features will be used to perform a digital twin-
based identification of bearing defects in a non-stationary regime. Simulated data will
be used instead of the experimental ones in the phase of the training of the classifier.
Furthermore, the performance of the proposed approach will be tested in the case of
combined gear-bearings systems.
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