Dislocation-mediated electronic conductivity in rutile - Archive ouverte HAL
Article Dans Une Revue Materials Today Nano Année : 2022

Dislocation-mediated electronic conductivity in rutile

Résumé

It has been recently shown that doping-like properties can be introduced into functional ceramics by inducing dislocations. Especially for TiO2, donor and acceptor-like behavior were observed depending on the type of introduced mesoscopic dislocation network. However, these early reports could not fully elucidate the mechanism behind it. In this work, we rationalize the electrical properties of dislocations by targeted microelectrode impedance measurements, local conductivity atomic force microscopy, and Kelvin probe force microscopy on deformed single crystals, comparing dislocation-rich and deficient regions. With the help of finite element method calculations, a semi-quantitative model for the effect of dislocations on the macroscopic electrical properties is developed. The model describes the dislocation bundles as highly conductive regions in which respective space charges overlap and induce temperature-independent, highly stable electronic conductivity. We illustrate the mechanism behind unique electrical properties tailored by introducing dislocations and believe that these results are the cornerstone in developing dislocation-tuned functionality in ceramics.
Fichier principal
Vignette du fichier
Muhammad_MTN_2020_DEF.pdf (1.41 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03542369 , version 1 (11-04-2022)

Identifiants

Citer

Qaisar Khushi Muhammad, Hanna Bishara, Lukas Porz, Christian Dietz, Matteo Ghidelli, et al.. Dislocation-mediated electronic conductivity in rutile. Materials Today Nano, 2022, 17, pp.100171. ⟨10.1016/j.mtnano.2021.100171⟩. ⟨hal-03542369⟩
44 Consultations
238 Téléchargements

Altmetric

Partager

More