Using machine learning techniques for predicting autogenous shrinkage of concrete incorporating superabsorbent polymers and supplementary cementitious materials - Archive ouverte HAL
Article Dans Une Revue Journal of Building Engineering Année : 2022

Using machine learning techniques for predicting autogenous shrinkage of concrete incorporating superabsorbent polymers and supplementary cementitious materials

Résumé

Superabsorbent polymers (SAP) are a very effective means of decreasing high-performance and ultra-high performance concrete autogenous shrinkage. However, their efficiency can hardly be predictable because of various parameters: SAP properties, supplementary cementitious materials (SCM) nature, and cement replacement ratios. This study provides a machine learning approach for predicting shrinkage/expansion in cementitious materials incorporating SAP and SCM. A dedicated database is built, and four machine learning models are compared. Extreme Gradient Boosting (XGBoost) model exhibited the highest accuracy. SHapley Additive exPlanations (SHAP) allowed the identification of the most influential inputs, and partial dependence plots provided quantitative information about their relative influence
Fichier principal
Vignette du fichier
Revised manuscript_ACCEPTED.pdf (2.76 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03541648 , version 1 (25-01-2022)

Identifiants

Citer

Benoit Hilloulin, van Quan Tran. Using machine learning techniques for predicting autogenous shrinkage of concrete incorporating superabsorbent polymers and supplementary cementitious materials. Journal of Building Engineering, In press, ⟨10.1016/j.jobe.2022.104086⟩. ⟨hal-03541648⟩
100 Consultations
243 Téléchargements

Altmetric

Partager

More