Analysis of families of divergences to compare Gaussian processes modeled by sums of complex exponentials disturbed by additive white noises - Archive ouverte HAL Access content directly
Journal Articles Digital Signal Processing Year : 2022

Analysis of families of divergences to compare Gaussian processes modeled by sums of complex exponentials disturbed by additive white noises

Abstract

The purpose of this paper is first to derive the expressions of various divergences that can be expressed from the Chernoff coefficient in order to compare two probability density functions of vectors storing k consecutive samples of a sum of complex exponentials disturbed by an additive white noise. This includes the Chernoff divergence and the α-divergence for instance. Tsallis, reversed Tsallis and Sharma-Mittal divergences are also addressed as well as the β-, γ- and αγ-divergences. The behaviors of the divergences are studied when k increases and tends to infinity. Depending on the divergence used, the divergence rate or the asymptotic normalized increment is considered. Expressions that encompass the divergence rate or the asymptotic normalized increment of the divergences are also given. Comments and illustrations to compare random processes are then given. This study makes it possible to show the advantages of the Kullback-Leibler divergence when studying this type of process.
Fichier principal
Vignette du fichier
S1051200422000537.pdf (1.37 Mo) Télécharger le fichier
Origin Files produced by the author(s)

Dates and versions

hal-03539755 , version 1 (22-07-2024)

Licence

Identifiers

Cite

Eric Grivel. Analysis of families of divergences to compare Gaussian processes modeled by sums of complex exponentials disturbed by additive white noises. Digital Signal Processing, 2022, 123, pp.103436. ⟨10.1016/j.dsp.2022.103436⟩. ⟨hal-03539755⟩
52 View
1 Download

Altmetric

Share

Gmail Mastodon Facebook X LinkedIn More