VISCOSITY SOLUTIONS AND HYPERBOLIC MOTIONS: A NEW PDE METHOD FOR THE N-BODY PROBLEM - Archive ouverte HAL
Article Dans Une Revue Annals of Mathematics Année : 2020

VISCOSITY SOLUTIONS AND HYPERBOLIC MOTIONS: A NEW PDE METHOD FOR THE N-BODY PROBLEM

Résumé

We prove for the N-body problem the existence of hyperbolic motions for any prescribed limit shape and any given initial configuration of the bodies. The energy level h > 0 of the motion can also be chosen arbitrarily. Our approach is based on the construction of global viscosity solutions for the Hamilton-Jacobi equation H(x, dxu) = h. We prove that these solutions are fixed points of the associated Lax-Oleinik semigroup. The presented results can also be viewed as a new application of Marchal's Theorem, whose main use in recent literature has been to prove the existence of periodic orbits.
Fichier principal
Vignette du fichier
hyperbolicNBP.pdf (552.41 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03537985 , version 1 (20-01-2022)

Identifiants

  • HAL Id : hal-03537985 , version 1

Citer

Ezequiel Maderna, Andrea Venturelli. VISCOSITY SOLUTIONS AND HYPERBOLIC MOTIONS: A NEW PDE METHOD FOR THE N-BODY PROBLEM. Annals of Mathematics, 2020. ⟨hal-03537985⟩
38 Consultations
65 Téléchargements

Partager

More