Blind deconvolution of sparse pulse sequences under a minimum distance constraint: a partially collapsed Gibbs sampler method - Archive ouverte HAL
Article Dans Une Revue IEEE Transactions on Signal Processing Année : 2012

Blind deconvolution of sparse pulse sequences under a minimum distance constraint: a partially collapsed Gibbs sampler method

Résumé

For blind deconvolution of an unknown sparse sequence convolved with an unknown pulse, a powerful Bayesian method employs the Gibbs sampler in combination with a Bernoulli–Gaussian prior modeling sparsity. In this paper, we extend this method by introducing a minimum distance constraint for the pulses in the sequence. This is physically relevant in applications including layer detection, medical imaging, seismology, and multipath parameter estimation. We propose a Bayesian method for blind deconvolution that is based on a modified Bernoulli–Gaussian prior including a minimum distance constraint factor. The core of our method is a partially collapsed Gibbs sampler (PCGS) that tolerates and even exploits the strong local dependencies introduced by the minimum distance constraint. Simulation results demonstrate significant performance gains compared to a recently proposed PCGS. The main advantages of the minimum distance constraint are a substantial reduction of computational complexity and of the number of spurious components in the deconvolution result.
Fichier principal
Vignette du fichier
kail_5624.pdf (4.28 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03534065 , version 1 (19-01-2022)

Identifiants

Citer

Georg Kail, Jean-Yves Tourneret, Franz Hlawatsch, Nicolas Dobigeon. Blind deconvolution of sparse pulse sequences under a minimum distance constraint: a partially collapsed Gibbs sampler method. IEEE Transactions on Signal Processing, 2012, 60 (6), pp.2727-2743. ⟨10.1109/TSP.2012.2190066⟩. ⟨hal-03534065⟩
17 Consultations
19 Téléchargements

Altmetric

Partager

More