Uniformly Valid Asymptotic Flow Analysis in Curved Channels - Archive ouverte HAL Access content directly
Journal Articles Physics of Fluids Year : 2012

Uniformly Valid Asymptotic Flow Analysis in Curved Channels


The laminar incompressible flow in a two-dimensional curved channel having at its upstream and downstream extremities two tangent straight channels is considered. A global interactive boundary layer (GIBL) model is developed using the approach of the successive complementary expansions method (SCEM) which is based on generalized asymptotic expansions leading to a uniformly valid approximation. The GIBL model is valid when the non dimensional number μ = δmath is O(1) and gives predictions in agreement with numerical Navier-Stokes solutions for Reynolds numbers Re ranging from 1 to 10 puissance 4 and for constant curvatures δ = math ranging from 0.1 to 1, where H is the channel width and Rc the curvature radius. The asymptotic analysis shows that μ, which is the ratio between the curvature and the thickness of the boundary layer of any perturbation to the Poiseuille flow, is a key parameter upon which depends the accuracy of the GIBL model. The upstream influence length is found asymptotically and numerically to be O(math).
Fichier principal
Vignette du fichier
zagzoule_6322.pdf (795.64 Ko) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03531025 , version 1 (18-01-2022)



Mokhtar Zagzoule, Patricia Cathalifaud, Jean Cousteix, Jacques Mauss. Uniformly Valid Asymptotic Flow Analysis in Curved Channels. Physics of Fluids, 2012, 24 (1), pp.013601-1. ⟨10.1063/1.3673568⟩. ⟨hal-03531025⟩
0 View
1 Download



Gmail Facebook Twitter LinkedIn More