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Uniformly valid asymptotic flow analysis in curved
channels

M. Zagzoule,1,a) P. Cathalifaud,1,b) J. Cousteix,2,c) and J. Mauss1,d)

1Université de Toulouse, INPT, UPS, CNRS, IMFT, F-31400 Toulouse, France
2ONERA - The French Aerospace Lab, ISAE, F-31055 Toulouse, France

The laminar incompressible flow in a two-dimensional curved channel having at its

upstream and downstream extremities two tangent straight channels is considered.

A global interactive boundary layer (GIBL) model is developed using the approach

of the successive complementary expansions method (SCEM) which is based on

generalized asymptotic expansions leading to a uniformly valid approximation.

The GIBL model is valid when the non dimensional number l ¼ dR
1
3
e is O(1) and

gives predictions in agreement with numerical Navier-Stokes solutions for Reyn-

olds numbers Re ranging from 1 to 104 and for constant curvatures d ¼ H
Rc

ranging

from 0.1 to 1, where H is the channel width and Rc the curvature radius. The as-

ymptotic analysis shows that l, which is the ratio between the curvature and the

thickness of the boundary layer of any perturbation to the Poiseuille flow, is a key

parameter upon which depends the accuracy of the GIBL model. The upstream

influence length is found asymptotically and numerically to be OðR
1
7
eÞ.

I. INTRODUCTION

Curvature is involved in many flow situations, whether it flows in man made devices or natu-

ral ones as physiological flows for instance. To characterize, the flow modifications induced by

curvature many studies have been published since the pioneering work by Dean1,2 who treated the

case of small curvature. Many reviews can be consulted among which those of Berger et al.,3 Ped-

ley,4 Ito,5 or Ward-Smith.6,7 The problems addressed previously were those associated with

upstream (and entry) effects, downstream effects, and fully established flow characteristics. The

methods used to get local or global insight ranged from asymptotic, analytic, or numerical simula-

tions, mostly for curved pipes where secondary flows were essentially concerned.

Very rare studies dealt with the 2D channel flow where no azimuthal secondary flow occurs

(Hurd and Peters8 and Snyder and Lovely9). This simpler situation can provide useful informa-

tions, on one hand about the effects of the curvature compared to an otherwise straight channel

and on the other hand compared to a 3D curved pipe case by discriminating the plane aspects

from the complex interaction with the azimuthal secondary flow. Moreover, the channel curved

configuration still keeps in its mathematical formulation, asymptotic and physical analysis not to

mention its numerical resolution, some interesting features which must be clarified before tackling

the more complex curved pipe case.

In general, modern asymptotic studies of the flow field structure, internal or external, exten-

sively used the triple deck theory.10,11 This method based on regular asymptotic developments of

the Poincaré type involves complex asymptotic matchings between different zones because the

underlying assumptions lead to a strong coupling between the two boundary layers in the case of
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channel flows. A different approach termed SCEM, (successive complementary expansions

method), in which one assumes a priori a uniformly valid approximation (UVA) based on general-

ized expansions, is adopted in the present work. This method was developed by Cousteix and

Mauss12,13 and leads to an asymptotic reduced model called global interactive boundary layer
(GIBL). This method avoids the complex and subtle process of constructing formally the asymptotic

matching between the boundary layers and core flow to build the solution of the flow field in the

whole domain.

We consider in the following, a two-dimensional laminar flow of an incompressible Newto-

nian fluid in a uniformly curved channel at high Reynolds number Re. The fact that the Reynolds

number Re is large makes it possible to consider an asymptotic analysis, in order to obtain a sim-

pler model than the Navier-Stokes (NS) equations.

In Sec. II, we start by writing the Cauchy equations in a curvilinear coordinate system (Eqs.

(A1)–(A3)). For a channel, where the curvature is uniform, K¼ d, K being defined as the ratio of

the channel width H to the curvature radius Rc, i.e., K¼H=Rc, we deal with the fully developed

flow case where the velocity field is independent of X and obtain an analytical expression for the

axial velocity irrespective of the order of magnitude of K. An interesting feature is the appear-

ance of KY in the viscous term as a variable added viscosity. For this established flow, we derive

a simple expression for the fully established velocity profile in the case of K being small (see

Eq. (11)).

In Sec. IV, we apply the SCEM to obtain the core flow behavior. Upon the assumption of a

small curvature parameter ðK �� 1Þ, we extract a reduced NS valid up to O(K) (Eqs. (16)–(18))

to which the SCEM is applied to obtain the core flow behaviour. The resulting linear Euler equa-

tions couples the known upstream basic Poiseuille flow with the perturbations induced by the cur-

vature (Sec. IV C). This is followed in Sec. IV D by a close analysis of the order of magnitude of

the core pressure as it impacts on the boundary layer. It is found there that the correction or addi-

tional term to the longitudinal pressure gradient in the boundary layer is negligible relative to the

one that satisfies the linear Euler model in the core flow and we end up with the key result for the

pressure gradient in the whole domain being

@P

@X
¼ dp0

dX
þ d

@p1

@X
þ Oðe3Þ

� �
;

where in the right-hand side the first term represents the basic Poiseuille pressure gradient, the sec-

ond the core pressure gradient induced by the perturbation, and the third the order of neglected

correction gradient in the boundary layer. In Sec. V, after noticing that the boundary layer velocity

corrections vanish in the core flow, the GIBL model consisting of the Eqs. (37) and (38) associated

with the core flow Eqs. (31) and (32) gives an approximation valid in the whole channel.
Unlike the triple deck boundary layer’s equations where the transverse Y variable is local,

the GIBL model deals with a global Y that varies from wall to wall. Moreover, the Eqs. (37) and

(38) “naturally” reduce to the linear Euler equations in the core. In fact, this limiting behaviour

is used to couple the core and the boundary layer flows, through the condition of equality of the

transverse velocities at the median line (Eq. (39)) as well as the pressure gradient expression

mentioned previously. The originality of the method presented in this paper is that it takes into

account not only the perturbed zones in between Poiseuillian established ones but also the transi-

tion between the curved entry flow zone induced by the curvature discontinuity and the curved

established part. This is done without having to build first the longitudinal asymptotic matching

between these two curved regions as triple deck approach has to do. The GIBL version of the

present work is the result of two asymptotic levels: first a regular asymptotic O(d) model of the

Dean type is built, upon which, in a second step, a high Reynolds singular asymptotic approach

is applied. In doing so, it captures the whole field flow effects induced by the curvature of the

channel regardless of them being of the entry type or established ones while considering the cur-

vature as a perturbation.

The validity of the GIBL model is tested in Sec. VI against full Navier-Stokes numerical reso-

lution. The predictive capacity of this GIBL model is more than satisfactory as shown through

many examples.



II. FORMULATION

A. General equations

If the characteristic length, velocity, and pressure are chosen, respectively, as H, U*, and

qU*2, the steady dimensionless equations can be written

ð~V � ~rÞ~V ¼ �~rPþ 1

Re
D~V; div~V ¼ 0; (1)

where ~V is the velocity, P the pressure, and Re the Reynolds number. The Reynolds number is

given by

Re ¼
q U�H

l�
; (2)

where l* is the viscosity.

A typical geometrical configuration considered in this paper consists of a 2D bend connected

to two tangent straight channels at its extremities (see Figure 1). For a channel defined, in the car-

tesian system Oxy, by the boundaries y ¼ 6 1
2

when x< 0 and for a flow rate of 1=6, the basic

plane Poiseuille flow can be written,

u0ðyÞ ¼
1

4
� y2; v0 ¼ 0;

dp0

dx
¼ � 2

Re
: (3)

Let the bend starts at x¼ 0 and consider a line such as,

Hðx; yÞ ¼ 0; (4)

If X is the measure of distance of the point M0 along H ¼ 0, then the lines X¼ constant are the

normal to H ¼ 0. For the curves Y¼ constant, we take the parallel lines to H ¼ 0, each of which

intersects the normal lines at constant distance from this median line. So, quite generally, X and Y
are, respectively, distances along the line H ¼ 0 and perpendicular to the line H ¼ 0. It is the me-

dian line if the upper (or inner) and lower (or external) walls are, respectively, given by Y ¼ 6 1
2
.

For a point M with general coordinates X and Y, we can write OM
��! ¼ OM0

��!þ Y~n, where ~n is

the unit normal vector. Then,

dM
�! ¼ dX 1þ KYð Þ~sþ dY~n; (5)

where ~s is the unit vector tangent at M0 to the median line in such a way that the orientation of

ð~s;~nÞ is positive or right-handed; K(X) is the algebraic curvature of this line. Thus, K< 0 in the

case of Figure 1.

Let U and V denote the velocity components parallel and perpendicular to the line H ¼ 0,

then, since ~V ¼ U~sþ V~n, the full equations of motion written in generalized coordinates are given

FIG. 1. The typical geometrical configuration considered: 2D bend connected to 2 straight channels at its extremities.



in the Appendix A. We choose this coordinates system because of the possibility to handle prob-

lems with non-constant curvature.

These equations must be solved with the following boundary conditions:

U ¼ V ¼ 0 for Y ¼ 6
1

2
: (6)

B. Fully established flow

For a channel where the curvature is uniform, K¼ d, the established velocity field U¼U0 is

independent of X. In the stationary case, G ¼ � @P
@X is a constant and U0 is solution of the equation,

ð1þ dYÞ d
2U0

dY2
þ d

dU0

dY
� d2

1þ dY
U0 ¼ �GRe; (7)

with U0¼ 0 for Y ¼ 6 1
2
.

The exact solution can readily be obtained and is given by

U0ðYÞ ¼
1

64
GRe

f ðd; YÞ
d2ð1þ dYÞ

; (8)

where

f ðd; YÞ ¼ d3ð1� 4Y2Þ þ 8d2Yð2Y � 1Þ þ 4dð�4Y2 þ 8Y � 3Þ
�

þ16ð1� 2YÞ� ln 2� d
2d

� �

þ �d3ð1� 4Y2Þ þ 8d2Yð2Y þ 1Þ þ 4dð4Y2 þ 8Y þ 3Þ
�

þ16ð1þ 2YÞ� ln 2þ d
2d

� �

� 32 2dY þ d2Y2 þ 1
� �

ln
1þ dY

d

� �
:

Unlike pipe flows, the fully developed 2D flow for a small constant curvature d, U0(Y), is so-

lution of the following simple equation:

d

dY
ð1þ dYÞ dU0

dY

� 	
¼ �G1Re; (9)

whose analytical solution is

U0ðYÞ ¼ �
G1Re

d
�Y �

ln
�ðd� 2Þðdþ 2Þ

4d2

� 	

2 ln
�ðdþ 2Þ

d� 2

� 	 þ ln
�ðdþ 2Þ

d� 2

� 	
ln

1þ dY

d

� 	2
664

3
775: (10)

At the order d, the solution of the Eq. (9) is,

U0 ¼
G1Re

2

1

4
� Y2

� �
1� 2d

3
Y

� �
: (11)

This simple result shows that the fully developed axial velocity profile is skewed slightly

towards the inside of the channel bend. This is quite different from the pipe flow case where, due

to azimuthal secondary flow, there is, for large Re, a strong skew outwards of the pipe. This

slight skewing towards the internal side leads to a maximum of the velocity approximately

located beside the median line at Ymax � � d
12

.

Moreover, since the flow rate is 1=6, the pressure gradient in Eq. (11) is exactly GRe¼ 2 as if

the curvature was zero. Thus, the axial velocity profile is written,



U0 ¼
1

4
� Y2

� �
1� 2d

3
Y

� �
: (12)

The skin friction coefficient Cf is given by,

Cf ¼ �
2

Re

dU0

dY






Y¼61

2

: (13)

As with Eq. (12), we have dU0

dY




Y¼61

2

¼ �1þ d
3
, thus the final result is,

Cf
Re

2
¼ 1� d

3
: (14)

If we note Ccurved
f and Cstraight

f the skin friction for the curved and straight channels, respectively,

we have
Ccurved

f �Cstraight

f

Cstraight

f

¼ � d
3

thus the shear stress in the curved internal wall will exceed the Pois-

euille case by 11% for d¼ 1=3 or 6.6% for d¼ 0.2, for example.

III. OVERALL PRESENTATION OF THE METHOD

The main objective of this work is to show that, subject to some order constraints, a UVA,

(U,V,P), can be computed and is relatively accurate. Along the asymptotic process, it is found that

this UVA verifies boundary layer like equations valid in the entire flow field and that the pressure

gradient of the core flow is asymptotically a good UVA of the pressure gradient. Thus, the core

longitudinal pressure gradient deduced from the linearised Euler equations is sufficient to drive

the entire axial flow.

This process can be viewed as a composite asymptotic expansion and have the main advant-

age of avoiding formal matching of a separate boundary-layer solution to a core flow (though the

boundary layers must still be resolved numerically when solving for the axial flow). This process

has an original approach which is the inverse of the standard ones since it starts with a UVA and

seeks afterwards what is its behaviour in the core.

In practice, the method goes through 4 main steps

(1) The formal writting of the uniformaly valid approximation (U,V,P) as an asymptotic expan-

sion. In this step, we use a SCEM;

(2) The analysis of the pressure magnitude orders. This step ends up finding that the core pressure

is a UVA, i.e., (U,V,P)¼ (U,V,P1), where P1 stands for the pressure in the core flow;

(3) The formulation of the equations of the UVA. This step ends up finding that (U,V,P1) is solu-

tion of boundary layer-like equations;

(4) The use of a long wave approximation to obtain a simplified expression for the pressure P1.

This step is not necessary.

The Sec. IV will be devoted to the first and second steps and the Sec. V to the third and fourth

steps.

The main physical ideas behind the second and third steps are

(a) that the pressure variations in the core of the flow can be calculated by solution of the linear-

ized Euler equations.

(b) that these pressure variations are transmitted through a negotiated strong coupling and with lit-

tle variation across the boundary layers.

(c) that the boundary layer approximation (neglect of R�1
e

@2U
@X2 ) can be applied to the entire flow

and not just the boundary layers.

IV. ASYMPTOTIC ANALYSIS

Notice that in this paper, we use A¼O(B) to mean that A is at most the same order as B and

possibly less.



A. The equations

The objective that we set now is to find a simpler model than the Navier-Stokes equations

using the least possible restrictive asymptotic assumptions. For this purpose, it is assumed that the

curvature K and its variation in X are small.

We describe the channel variable curvature for X> 0 by

K ¼ dkðXÞ; (15)

where d is a small positive parameter.

Since we are considering high Reynolds number, the basic flow is dominated by its longitudi-

nal component, therefore, all the terms are small except U, @U
@Y , @

2U
@Y2 , and @P

@X which are of order 1.

Then, to order d included, continuity equation and Navier-Stokes equations can be written in

the stationary case,

@U

@X
þ @V

@Y
¼ 0; (16)

LeU ¼ U
@U

@X
þ V

@U

@Y
þ @P

@X
� 1

Re

@2U

@X2
þ @

@Y
ð1þ KYÞ @U

@Y

� 	� �
¼ 0; (17)

LeV ¼ U
@V

@X
� KU2 þ @P

@Y
� 1

Re

@2V

@X2
þ @

2V

@Y2

� �
¼ 0: (18)

Note that at this O(d) approximation, the curvature is appearing only twice: in the viscous term of

the longitudinal momentum equation as a variable viscosity and in the KU2 centrifugal=inertial

part of the transversal momentum equation. The streamline curvature creates a radial pressure gra-

dient which is very important for upstream influence. To simplify the notation, the unknowns are

still denoted (U,V,P), even if now it is a uniformly valid approximation.

B. Using the SCEM

The fact that the Reynolds number is high is clearly important when perturbation occurs. In

our stationary case, this perturbation can be for instance a change in the geometry of the walls or a

variation in the curvature. Thus, Navier-Stokes equations for the perturbation reduce to the first

order equations and we are faced with a singular perturbation problem. In order to satisfy the no-

slip condition at the walls, we must define boundary layers. To achieve this, a convenient mathe-

matical approach is the SCEM.

We seek a solution in the form,

U ¼ u0 þ du; V ¼ dv; (19)

where u0ðYÞ ¼ 1
4
� Y2. Therefore, in the core flow, the approximations in terms of generalized

expansions can be written,

U1 ¼ u0ðYÞ þ du1ðX; Y; dÞ;
V1 ¼ dv1ðX; Y; dÞ;
P1 ¼ p0ðXÞ þ dp1ðX; Y; dÞ;

(20)

where p0ðXÞ ¼ � 2X
Re

. Note that the dependence on the Reynolds number is implicit. If we consider

the flow near a wall, say the lower wall to fix ideas, since the Reynolds number is large, a bound-

ary layer of yet unknown thickness e will develop. In the neighbourhood of this wall, the boundary

layer variable is,

g ¼
1

2
þ Y

e
: (21)



According to the SCEM, a UVA is obtained by complementing the core approximation Eq.

(20) with boundary layer terms,

U ¼ u0ðYÞ þ d u1ðX; Y; dÞ þ UBLðX; g; dÞð Þ; (22)

V ¼ d v1ðX; Y; dÞ þ eVBLðX; g; dÞð Þ; (23)

P ¼ p0ðXÞ þ d p1ðX; Y; dÞ þ DðeÞPBLðX; g; dÞð Þ: (24)

The terms UBL, VBL, and PBL being O(1), are correcting terms, respectively, to u1, v1, and p1 in the

boundary layer such that lim
g!1

UBL ¼ 0, lim
g!1

VBL ¼ 0, and lim
g!1

PBL ¼ 0.

Again, the quantities (U,V,P) do not represent the exact solution but only a uniformly valid

approximation for the core and the lower boundary layer. The form of V is imposed by the conti-

nuity equation. We can evaluate the boundary layer thickness e in a O(1) neighbourhood of the

perturbation. Actually, in the longitudinal equation, in order to have the same order for the inertial

and viscous terms and since u0¼O(e) in the boundary layer,

e ¼ R
�1

3
e : (25)

To satisfy the hypothesis of Eq. (22), i.e., du¼O(e) as a limit case, necessarily

d ¼ O eð Þ (26)

which means that

d ¼ O R
�1

3
e

� �
: (27)

According to Eq. (27), a characteristic number in this 2D curved channel is

l ¼ dR
1
3
e (28)

l can be seen as the ratio between the curvature d and the boundary layer thickness e around the

discontinuities, and from Eqs. (25) and (27) l¼O(1).

Thus, the first significant perturbation is obtained when e and d are of the same order, and per-

mits U to be negative in the boundary layer. This challenging case is when l is of strict order 1,

l¼ 1. A special attention will thus be paid to this challenging case in the tested configurations on

Sec. VI. It should be noted that although we have an analytical solution for the curved established

flow valid for all d, the fact that l¼O(1) reduces the range of curvatures to be considered at high

Reynolds numbers.

C. Euler equations

The Euler equations which are supposed to be a good approximation in the core flow, far

from the boundary layers, are formally obtained for a high Reynolds number and a small median

line curvature.

Since non-linear terms are small in the core flow, and since we seek for O(d) approximations,

we thus use the linearized Euler equations. We then have,

@u1

@X
þ @v1

@Y
¼ 0; (29)

u0

@u1

@X
þ v1

du0

dY
¼ � @p1

@X
; (30)

u0

@v1

@X
� ku2

0 ¼ �
@p1

@Y
: (31)



We know from preceding analysis (Cousteix and Mauss14) that u1 has a logarithmic singularity

near the boundaries. Thus, a classical asymptotic method using matching will not work easily.

Since in Eqs. (29) and (30), only the derivative in X of u1 appears, we use the equation,

�u0

@v1

@Y
þ v1

du0

dY
¼ � @p1

@X
(32)

instead of the Eqs. (29) and (30).

D. The pressure

We now show that the additional contribution PBL to the pressure in the boundary layer is

negligible in comparison to the pressure p1 which satisfies the linearized Euler model (Eqs. (31)

and (32)) of the core flow.

To satisfy the boundary condition V¼ 0, it is required, from Eq. (23), that v1¼O(e) in the

boundary layer. Thus, by analysing the behaviour of the core pressure in the boundary layer,

through (Eqs. (31) and (32)), we obtain that

@p1

@X
¼ OðeÞ and

@p1

@Y
¼ Oðe2Þ: (33)

Since the transverse momentum Eq. (18) shows that @P
@Y ¼ Oðe3Þ in the boundary layer, Eq. (24)

implies that D¼O(e3). It can also be seen, from the same Eq. (24), that in the whole field (bound-

ary layer and core),

@P

@X
¼ dp0

dX
þ d

@p1

@X
þ Oðe3Þ

� �
: (34)

This result is the key of the analysis since, at the considered order, in Eq. (17), @P
@X can be replaced

by @P1

@X , where

@P1

@X
¼ dp0

dX
þ d

@p1

@X
: (35)

As far as the driving pressure gradient is concerned, the inertial effects of the perturbation in the

core region are shown to be many orders more important than those induced directly by the pertur-

bation in the boundary layer region. These modifications are not simply transmitted to the bound-

ary layer but negotiated through a strong coupling.

V. THE GIBL

A. General formulation

To build the model, we may be tempted by more traditional methods suggested by the expres-

sions (22) and (23), namely write the equations for UBL and VBL and use the principles of regular

asymptotic developments to match zones between the core and boundary layer. Knowing that

(u1,v1) is an approximation of the solution in the core flow, we can use the matching conditions,

lim
g!1

UBL ¼ 0 and lim
g!1

VBL ¼ 0 (36)

to solve the equations. In fact, by using the SCEM as described in Sec. IV B, the equations reduce

in the boundary layer to,

@U

@X
þ @V

@Y
¼ 0; (37)

U
@U

@X
þ V

@U

@Y
¼ � @P1

@X
þ 1

Re

@

@Y
ð1þ KYÞ @U

@Y

� 	
: (38)



The 1þKY
Re

term in Eq. (38) can be interpreted as an algebraic variable viscosity induced by the

curvature.

The same Eqs. (37) and (38) and the same results for the pressure can be obtained for the

upper wall. Therefore, it is clear that (Eqs. (37) and (38)) associated with the core flow, Eqs. (31)

and (32) give an approximation valid in the whole channel, a UVA.

These equations are associated with the boundary conditions (6).

As the full model comprises the generalized boundary layer Eqs. (37) and (38) for U, V and

the core flow Eqs. (31) and (32) for v1 and p1 with boundary conditions (6), we must link the two

sets of equations. This is achieved by the fact that the uniformly valid approximation V must agree

with V1¼ dv1 in the core. This is not a matching condition, but somewhere in the core, for Y¼ Yc,

we impose,

V ¼ V1: (39)

This can be done for instance on the median line with Yc¼ 0.

This GIBL problem is easier to formulate than a more classical matched asymptotic method.

This is a reason why we use U and V, in Eqs. (22) and (23) instead of the boundary layer variables

UBL and VBL.

The field Eqs. (37) and (38) have the same form as Prandtl equations, however, these equa-

tions are no more boundary layer equations, and they are uniformly valid in the whole field of the
flow.

B. A simplified model

When the influence length, L*, of the perturbation in the flow field is larger than the channel

height H, the pressure X-derivative can be neglected in Eq. (30) (see Appendix B). Then, the solu-

tion of Eqs. (29) and (30) is

u1 ¼ AðXÞu00; v1 ¼ �u0A0ðXÞ; (40)

where A is yet an unknown function.

The fact that v1 is symmetric corresponds to an antisymmetric geometrical configuration

which is the case treated here.

By replacing the expressions (40) into Eq. (31), we obtain that

� u2
0A00ðXÞ � ku2

0 ¼ �
@p1

@Y
; (41)

which permits to calculate the pressure,

p1 ¼ ðA00 þ kÞ
ðY

Yc

u2
0ðY0Þ dY0þ BðXÞ: (42)

Thus, from Eq. (35), we can write

@P1

@X
¼ dp0

dX
þ d A000 þ k0ð Þ

ðY

Yc

u2
0ðY0Þ dY0þ dB0ðXÞ: (43)

In order to treat curvature discontinuities, we use a change of variables such as neither k or k0

appears in the equations (see Appendix C).

C. Numerical procedure

According to the analysis proposed in Sec. V A, the problem is to solve the generalized

boundary layer Eqs. (37) and (38) associated to the core flow Eqs. (31) and (32). The velocity

components U and V vanish at the walls and the coupling condition between the boundary layer



solution and the core flow solution is given by Eq. (39). More details about the numerical resolu-

tion of these GIBL equations can be found in Cathalifaud et al.15

By using the model described in Sec. V B, we obtain a simplified GIBL problem which is

made of Eqs. (37), (38), and (43). In this formulation, we have to determine A(X) and B(X). To

this end, two conditions are used: the first one is to ensure mass flow conservation in the channel

and the second one is given by the coupling condition (39).

A step by step marching procedure from upstream to downstream is used to calculate U and

V. Several sweeps of the calculation domain are required in order to take into account the

upstream influence. At a given station Xs, as a first approximation, it is assumed that the function

A is known. The solution of the generalized boundary layer equations is determined by iterating

on the value of function B at the considered station in order to ensure global mass flow conserva-

tion in the channel, i.e., to satisfy V¼ 0 on both walls. More precisely, the derivative dB
dX, which is

present in the momentum equation, is determined. Upon convergence, an updated value of A is

calculated as follows. The continuity equation is integrated between the lower wall Y¼�1=2 and

the median line Yc¼ 0 by taking into account the core condition (39), the boundary condition

V(�1=2)¼ 0, and the relation (40), which gives the updated value of A as

FIG. 3. (Color online) Nondimensional wall shear stress,
Cf

2
Re, with respect to the distance along the median curve, X; the

long dashed lines give the approximate levels of the established flow wall shear stress in the bend, 1 6 d=3; Rc¼ 5H and

Re¼ 1000; and straight lines: NS results and dashed lines: GIBL results.

FIG. 2. (Color online) Nondimensional wall shear stress,
Cf

2
Re, with respect to the distance along the median curve, X; the

long dashed lines give the approximate levels of the established flow wall shear stress in the bend, 1 6 d=3; Rc¼ 10H and

Re¼ 1000; and straight lines: NS results and dashed lines: GIBL results.



dA

dX
¼ 1

u0ðYcÞ

ðYc

�1=2

@U

@X
dg: (44)

When the updated value of A is determined, the calculations proceed to the next station. The

updated value of A is used at the next sweep. More details about the resolution of this simplified

GIBL model can be found in Cousteix and Mauss.16

VI. RESULTS

To test the validity of the GIBL model for curved channels, we consider a geometrical config-

uration that includes tangent straight channels upstream and downstream of a 180	 curved part.

The straight parts have been added to avoid the problem of inlet and outlet boundary conditions at

the entry and exit of the curved part which are not known a priori. Even the fully established

curved solution as inlet condition to the curved channel would seem non physical since it would

mean that the curved channel is virtually longer upstream than it is actually and that the flow has

been fully established. In fact any inlet boundary condition at the entry of the curved part alone

creates a cut off of the upstream non linear interaction. This configuration allows also to test the

effect of a curvature discontinuity.

At the inlet of the upstream straight channel, a parabolic profile was given while at the outlet

of the downstream straight channel a constant zero pressure was prescribed. This configuration

has also been chosen to explore the upstream influence as well as the downstream effects before

and after the curved part. Several curvatures ranging from 0.1 to 1 as well as different values of

the Reynolds number Re ranging from 1 to 10 000 have been investigated. The NS equations have

been solved using commercial softwares FLUENT or COMSOL which gave similar results for the cases

treated here. The lengths of the straight parts of the channels were varied from 10H to 20H for the

upstream part and from 10H to 70pH for the downstream part depending on the Reynolds number

to recover an established Poiseuille flow at the outlet.

FIG. 4. (Color online) Nondimensional wall shear stress,
Cf

2
Re, with respect to the distance along the median curve, X; the

long dashed lines give the approximate levels of the established flow wall shear stress in the bend, 1 6 d=3; Rc¼ 3H and

Re¼ 1000; and straight lines: NS results and dashed lines: GIBL results.



A. Shear stress

The skin friction coefficient which is the non dimensional wall shear stress sw,

Cf ¼
sw

1

2
qU�2

(45)

is known as a very sensitive characteristic of the flow field. For our case, we have,

Cf ¼ �
2

Re

@U

@Y






Y¼61

2

: (46)

Figures 2 to 10 present several cases where the shear stress obtained by the GIBL model is

compared to the numerical solution of the complete NS equations. As can be seen qualitative

global behaviour as well as quantitative predictions of the shear stress at both walls is well repro-

duced by the GIBL model for small curvatures d up to 0.3 and Re¼ 1000 when compared to com-

plete NS. The accuracy of the GIBL model depends on the key parameter l ¼ dR
1
3
e since this

asymptotic model was build under the assumption that l is O(1). But even when l¼ 10, i.e., when

FIG. 6. (Color online) Nondimensional wall shear stress,
Cf

2
Re, with respect to the distance along the median curve,

X; Rc¼ 5H and Re¼ 10 000; and straight lines: NS results and dashed lines: GIBL results.

FIG. 5. (Color online) Nondimensional wall shear stress,
Cf

2
Re, with respect to the distance along the median curve,

X; Rc¼H and Re¼ 1000; and straight lines: NS results and dashed lines: GIBL results.



d¼ 1 (Figure 5), which is out of the formal range of validity of the GIBL model, since it was for-

mally constructed on the basis of a small curvature, one can see that the upstream effect is accu-

rately captured. As for the peaks that appear at the vicinity of the entry of the curved part, the

small difference in the cases where d
 0.3 might be due to the simplified expression (43) used in

the GIBL instead of solving the pressure Poisson equation or to the discontinuity of the curvature

at the junctions of the straight parts with the curved one.

The normalised shear stress
Cf

2
Re increases at the internal wall and decreases at the external

wall relatively to the upstream Poiseuille flow and then tends asymptotically to the established so-

lution (where Cf ¼ � 2
Re

dU0

dY




Y¼61

2

) for d
 0.3 whenever a fully established flow zone does poten-

tially exist which is Re and d dependent. The approximate established values for the wall shear

stress 1� d
3
, deduced from the simplified Eq. (11), are plotted as straight dashed lines in some

figures.

It should be mentioned that the fully established values for NS and GIBL Cf are numerically

slightly different since the basic equations for the established flows differ as the solved NS equa-
tions neglect no terms involving d while GIBL model neglects formally the d2 term in the basic

FIG. 8. (Color online) Nondimensional wall shear stress,
Cf

2
Re, with respect to the distance along the median curve, X; the

long dashed lines give the exact levels of the established flow wall shear stress in the bend, sint
w and sext

w ; Rc¼ 5H and

Re¼ 10; and straight lines: NS results and dashed lines: GIBL results.

FIG. 7. (Color online) Nondimensional wall shear stress,
Cf

2
Re, with respect to the distance along the median curve, X; the

long dotted and dashed lines give, respectively, the approximate (1 6 d=3) and the exact (sint
w and sext

w ) levels of the estab-

lished flow wall shear stress in the bend; Rc¼ 5H and Re¼ 100; and straight lines: NS results and dashed lines: GIBL

results.



equation but happens to keep in its solution some terms involving d2 through logarithmic terms. It

has been shown above that the NS equations, whatever are the values of Re or d reduce in the fully

established zone to the Eq. (7), whose analytical solution is Eq. (8). It is expected that the solution

of the complete NS equations will tend asymptotically to these values in the established zone.

This is somewhat the case as can be seen in the figures.

The GIBL formally tends in the fully established zone to Eq. (9), whose analytical solution is

Eq. (10). The differences between the fully established GIBL and NS wall shear stress are of the

order 10�3.

After these plateau regions, when they exist, an opposite behaviour follows before the exit of

the curved channel rendering the second upstream influence of the transition from curved to

straight channel. Downstream in the straight channel the Poiseuille case is recovered at some dis-

tances from the outlet, being longer as Re is higher. We found it necessary to expand the down-

stream channel up to 70pH to reach an established Poiseuille flow at about 40H for Re¼ 10 000

and d¼ 0.2 (see Figure 6).

Other values than Re¼ 1000 or Re¼ 10 000 were tested. Since The GIBL was formally estab-

lished for high Reynolds number, and mainly in the core region where linear Euler equations were

used, it was tempting to test whether this GIBL can provide accurate results for smaller Re. In

FIG. 10. (Color online) Nondimensional wall shear stress,
Cf

2
Re, with respect to the distance along the median curve, X;

Rc¼H and Re¼ 10; straight lines: NS results and dashed lines: GIBL results.

FIG. 9. (Color online) Nondimensional wall shear stress,
Cf

2
Re, with respect to the distance along the median curve, X; the

long dashed lines give the exact levels of the established flow wall shear stress in the bend, sint
w and sext

w ; Rc¼ 5H and

Re¼ 1; and straight lines: NS results and dashed lines: GIBL results.



Figures 7 to 9, it can be seen that this is the case for Re¼ 100, Re¼ 10, and Re¼ 1 for d¼ 0.2 and

even for d¼ 1 when Re¼ 10 in Figure 10 which is apparently a surprising result. However,

although Re and d are the fundamental parameters for this asymptotic model, it is their combina-

tion in l ¼ dR
1
3
e which acts as a global model “lock” that ultimately determine the accuracy of this

GIBL model. Very often asymptotically and rationally built models achieve such accuracy out of

the domain of their expected hypothetical validity.

B. Pressure distribution

The pressure evolution at the walls and in the median line through the tangent and curved

parts is well reproduced by the GIBL as can be seen in Figure 11 for Re¼ 1000 and d¼ 0.2. The

less apparent agreement in the curved part as Re is increased to 10 000 is due mainly to scaling

factors since Figure 11 deals with values ten times greater than Figure 12. Its general behaviour is

similar to the curve obtained experimentally by Ito17 in the 3D pipe case and for higher Re. Our

2D simulation shows clearly how the curvature of the bend is involved in the whole structure of

the fluid motion characteristics in the absence of the azimuthal secondary flow phenomenon and

may be used to distinguish the pure 3D aspects from the 2D ones. In fact in the literature one is

uncomfortable by what the authors put under the expression “secondary flow” since this is some-

times mainly related to the azimuthal secondary flow initiated in the transverse boundary layer by

the “centrifugal” forces. However, as the 2D clearly shows the “centrifugal” forces give rise to an

FIG. 12. (Color online) Pressure P1 with respect to the distance along the median curve, X; Rc¼ 5H and Re¼ 10 000;

straight lines: NS results; dashed lines: GIBL results; and dot-dashed line: equivalent straight channel pressure.

FIG. 11. (Color online) Pressure P1 with respect to the distance along the median curve, X; Rc¼ 5H and Re¼ 1000; and

straight lines: NS results and dashed lines: GIBL results.



in plane displacement initiated by the curvature and this suffices to reproduce qualitatively the

main salient characteristics that Ito’s pressure curves (measured experimentally) exhibit. Both this

displacement and the azimuthal secondary flow are manifestations of the curvature in the 3D case

but the former is sometimes put aside or not enough highlighted.

Variations in pressure due to the presence of the bend start to occur in the upstream tangent

channel at some distance away from the bend, and we note that this upstream effect induced by

the presence of the distal curved part is captured clearly and accurately by the GIBL model. In the

upper boundary layer near the internal wall, the pressure drops and in the lower boundary layer

near the external wall the pressure rises in the straight tangent part in anticipation before the

curved part is reached. The physical scenario of this upstream influence induced here by the bend

is well and deeply analysed by Smith,18 whatever the accident is, in this way: In physical terms,
the small increase in pressure near the lower wall causes the viscous layer there to expand, and
consequently the upper layer to contract, a motion which sets up a negative pressure gradient
across the channel. This produces a small decrease in pressure near the upper wall, tending to
induce an even greater compression of the viscous layer there, and so the process is reinforced.

In the continuation of the upstream effect, an adverse pressure gradient develops on the outer

wall of the bend and a favourable gradient is formed on the inner wall. At about the bend’s exit,

FIG. 14. Pressure p at the external wall with respect to the distance along the median curve, X; Rc¼ 5H and Re¼ 1000

(GIBL); and straight line: p, dashed line: ðA00 þ dÞ
Ðwall

Yc
u2

0 dy, and dot-dashed line: B�P0.

FIG. 13. (Color online) Pressure P1 with respect to the distance along the median curve, X; Rc¼ 1H and Re¼ 1000 (NS

results); and straight lines: external wall and dashed lines: internal wall.



the situation is inverted: it is at the inner wall that the adverse pressure gradient is set. It is in these

zones of adverse pressure gradients that separation may occur as can be seen in Figure 5 where

separation is located around the exit at the internal wall. The adverse pressure gradient at the outer

wall near the bend’s entry being less than the adverse gradient at the inner wall near the bend’s

exit (see Figure 13) may explain that separation is initiated at the exit and not at the entry in this

case.

It is interesting to analyse the pressure evolution using the approximation of Eq. (42) which

involve the 3 parameters A00(X), d, and B(X). The main contribution comes from the

ðA00 þ dÞ
Ðwall

Yc
u2

0 dy term as shown in Figure 14. Whenever the fully developed flow is established

in the straight parts, this term vanishes due to the vanishing of both d and A00(X). If the fully devel-

oped flow is established in the curved part, only A00(X) is zero, due to the vanishing of @v1

@X and the

transverse pressure gradient is solely balanced by the so called centrifugal forces, i.e., du2
0. We

thus recover in the curved established flow d as the only non zero coefficient of the integral term

involved in the pressure. This can be seen clearly in Figure 15.

The sharp variations due to the discontinuity of the curvature at both junctions between the

curved part and the straight tangent channels are well captured by the GIBL as can be illustrated

through the displacement function A(X) which is related to the core longitudinal velocity perturba-

tion, and hence also by A0(X) which is related to the transverse velocity and by A00(X) as can be

seen in Figure 16. All of them are zero when the flow is established in the straight parts, but only

A0(X) and A00(X) are null in the curved part. A(X) does not vanish in the curved part since the fully

established curved flow is considered by GIBL as a perturbation relative to the local Poiseuille

flow.

In the downstream tangent straight channel, a linear pressure decrease, with the displacement

effect A tending to zero, is recovered in a more or less longer length depending on the Re value. A

Poiseuille flow like situation was almost attained at a 40H length in the downstream straight tan-

gent channel for the case of Re¼ 10 000.

C. Velocity profiles and upstream influence length

The evolution of the radial velocity and the axial perturbation velocity profiles in the

upstream tangent channel proximal to the bend’s entry are presented in Figure 17. The influence

of the bend on the velocities distribution is shown to exist a few diameters upstream of the bend.

The extension of this upstream influence is well captured by the GIBL model. The amplitude of

the velocity perturbations seems more accurately reproduced by the GIBL for the radial velocity

than for the axial perturbation. The fluid near the inner wall accelerates relatively to Poiseuille

flow in the inner wall and decelerates at the outer wall while the maximum of the radial velocity is

FIG. 15. A00 þ d with respect to the distance along the median curve, X, for different values of d; Re¼ 1000 (GIBL);

straight line: d¼ 0.1; dashed line: d¼ 0.2; and dot-dashed line: d¼ 0.3.



FIG. 16. A, A0, and A00 with respect to the distance along the median curve, X, for the case Rc¼ 10H and Re¼ 1000

(GIBL).

FIG. 17. v(X,g) (top) and u(X,g) (bottom) profiles upstream the bend, for different values of X (from �2 to �0.25);

Rc¼ 5H and Re¼ 1000; and left (NS) and right (GIBL).



at the center of the channel. Thus, a skewing of the velocity profile towards the inner wall is

induced in anticipation and before the curved part is reached. This shows that imposing a flat pro-

file at the entry of a curved channel as was done previously by Snyder and Lovely9 may appear

somewhat artificial since it does not take into account the upstream effect. Adopting the geometri-

cal configuration of a bend having a proximal tangent channel circumvents the problem of the

bend inlet condition even though this configuration does introduce a discontinuous curvature at

the junction of the straight channel to the bend. The bends inlet flow condition is, therefore, solved

while taking into account the free upstream non linear interaction.

The length of this upstream influence to an incoming Poiseuille flow was shown asymptoti-

cally to be, for high Reynolds, of the order of R
1
7
e by Smith18 whatever the nature of the distal per-

turbation is. In the present work, it was found numerically by solving NS or GIBL that this

upstream length is of the order of R
1
7
e for the Re¼ 1000 whatever the curvature is as can be seen in

Figure 18. Moreover, this is the case also for Re ranging from 100 to 10 000 (Figures 19 and 20).

However, this is not the case for Re � 10 (Figure 19). This confirms and validates the high Reyn-

olds asymptotic analysis performed by Smith for the upstream effects and mainly its length. This

may have important implications in situations involving the flow control.

Figures 21 and 22 present the cross section evolutions of the axial, transverse velocities, and

pressures at 3 stations in the curved pipe. The higher axial velocities at a cross section occur on

the inner wall at the bend entry and on the outer wall at the bend exit. Near the walls, the

FIG. 18. Normalized V(X,Yc) with respect to the distance along the median curve, X, for different values of d (from 0.1 to

1); Re¼ 1000 (GIBL).

FIG. 19. Normalized V(X,Yc) with respect to the distance along the median curve, X, for different values of Re (from 1 to

10 000); d¼ 0.2 (GIBL).



agreement between the GIBL and NS plots is very good compared to the core flow at the extrem-

ities of the bend where more differences are apparent. This seems mainly due to the discontinuity

of the curvature at the bend extremities rather than to the linear Euler approach used in the core

region to compute the pressure since in the middle of the bend the GIBL and the NS results match

better.

VII. CONCLUSION

Through an asymptotic process, a uniformly valid asymptotic model for curved 2D channel

flows was obtained. This reduced model, termed GIBL for global interactive boundary layer, was

used to investigate the flow characteristics in a configuration including a 180	 channel bend of

constant curvature connected to two tangent upstream and downstream straight channels. This

configuration makes it possible to overcome the difficult problem of what inlet or outlet conditions

FIG. 20. Normalized V(X,Yc) with respect to the normalized distance along the median curve, XR
�1

7
e , for different values of

Re (from 100 to 10 000); d¼ 0.2 (GIBL).

FIG. 21. (Color online) u, v, and p profiles; Rc¼ 5H and Re¼ 10 000.



are to be imposed numerically at the bend’s extremities, thus leaving the non linear upstream and

downstream interactions develop freely. Unlike the triple deck boundary layer’s equations where

the transverse Y variable is local, i.e., a boundary layer variable, the GIBL model deals with a

global Y that varies through the entire channel section. The other important feature of the model

presented in this paper is that it also deals with a global X that varies through the entire channel

longitudinal length (from entry to outlet). This GIBL model was constructed for a high Reynolds

number laminar channel flow with the bend being considered as a perturbing situation to an other-

wise fully developed Poiseuille flow. Another perturbation is due to the discontinuous curvature at

the bend’s extremities.

The bend’s curvature is assumed small but the controlling parameter of this asymptotic model

is the non-dimensional number l ¼ dR
1
3
e which is supposed O(1). As long as this condition is satis-

fied, the GIBL is in good agreement with the full Navier-Stokes simulations even for small Re

cases. Satisfactory predictions for the wall shear stress, pressure distribution, axial and radial veloc-

ities through the whole configuration were obtained. This was achieved even when using a simpli-

fied Euler model, proposed by Stewartson and Williams19 for the external flow and rationally

formulated for the internal flow by Smith, instead of solving the Poisson equation for the pressure.

A future task would be to explore the flow characteristics of variable curvature and=or vari-

able section height before extending this approach to the most challenging case, i.e., the 3D pipe

case where secondary flow occurs and induces more complex interaction.

APPENDIX A: NAVIER-STOKES EQUATIONS IN GENERALIZED COORDINATES

For a point M with general coordinates X and Y, we can write OM
��! ¼ OM0

��!þ Y~n, where ~n is

the unit normal vector. Then,

dM
�! ¼ dX 1þ KYð Þ~sþ dY~n;

where ~s is the unit vector tangent at M0 to the median line in such a way that the orientation of

ð~s;~nÞ is positive or right-handed; K(X) is the algebraic curvature of this line.

FIG. 22. (Color online) u, v, and p profiles; Rc¼ 5H and Re¼ 1000.



Thus, the continuity equation and the Cauchy equations may be written as

@U

@X
þ @

@Y
ð1þ KYÞV½ � ¼ 0; (A1)

U
@U

@X
þ ð1þ KYÞV @U

@Y
þ KUV ¼ � @P

@X
þ @rXX

@X
þ @

@Y
ð1þ KYÞrXY þ KrXY

� 	
; (A2)

1

1þ KY
U
@V

@X
þ V

@V

@Y
� K

1þ KY
U2 ¼� @P

@Y

þ 1

1þ KY

@rXY

@X
þ @

@Y
ð1þ KYÞrYY � KrXX

� 	
; (A3)

where, for a newtonian fluid, we have

rXX ¼
2

ð1þ KYÞRe

@U

@X
þ KV

� �
; (A4)

rXY ¼
1

ð1þ KYÞRe

@V

@X
þ ð1þ KYÞ @U

@Y
� KU

� �
; (A5)

rYY ¼
2

Re

@V

@Y
: (A6)

We assume that K is a small parameter. Since we are considering a high Reynolds number ba-

sic flow dominated by its longitudinal component, all the terms are small except U, @U
@Y , @

2U
@Y2 , and @P

@X
which are of order 1.

Let say that K, V, @U
@X, … are O(d). For a newtonian fluid, at the order d, we have

rXX ¼
2

Re

@U

@X
þ Oðd2Þ ¼ OðdÞ; (A7)

rXY ¼
1

Re

@V

@X
þ @U

@Y
� KU

� �
þ Oðd2Þ ¼ Oð1Þ; (A8)

rYY ¼
2

Re

@V

@Y
¼ OðdÞ: (A9)

Then, at the order d, the Eqs. (A1), (A2), and (A3) are

@U

@X
þ @V

@Y
¼ 0; (A10)

U
@U

@X
þ V

@U

@Y
¼ � @P

@X
þ @rXX

@X
þ @

@Y
ð1þ KYÞrXY þ KrXY ; (A11)

U
@V

@X
� KU2 ¼ � @P

@Y
þ @rXY

@X
þ @rYY

@Y
; (A12)

where the corrresponding Navier-Stokes equations are

U
@U

@X
þ V

@U

@Y
¼ � @P

@X
þ 1

Re

@2U

@X2
þ @

@Y
ð1þ KYÞ @U

@Y

� 	� �
; (A13)



U
@V

@X
� KU2 ¼ � @P

@Y
þ 1

Re

@2V

@X2
þ @

2V

@Y2

� �
: (A14)

APPENDIX B: LONG-WAVE APPROXIMATION

Let L* be the influence length of a perturbation in the flow field, i.e., the length of a region

where @v1

@X 6¼ 0 in the straight or curved parts. Define L ¼ L�

H and assume that L� 1.

To analyse the flow on this length scale L, let �X ¼ X
L. Then, the continuity equation implies a

scaling of V such as: �V ¼ LV. To focus the analysis on the zones where the flow field is perturbed,

we introduce p�1 defined by

p�1 ¼ p1 � k

ðY

Yc

u2
0 dY: (B1)

The core Eqs. (31) and (32) thus become

� u0

@v1

@Y
þ v1

du0

dY
¼ � @p�1

@ �X
; (B2)

L�2u0

@v1

@ �X
¼ � @p�1

@Y
: (B3)

The analysis of the order of magnitudes in the boundary layer of the terms in Eqs. (B2)–(B3)

shows that

@p�1
@ �X
¼ OðeÞ; (B4)

@p�1
@Y
¼ Oðe2L�2Þ: (B5)

Performing the �X derivative of Eq. (B3) yields

L�2u0

@2v1

@ �X2
¼ � @

@ �X

@p�1
@Y

� �
: (B6)

From Eq. (B6), we deduce that in the core

@

@Y

@p�1
@ �X

� �
¼ OðL�2Þ: (B7)

Therefore, using Eq. (B4), we have uniformly

@p�1
@ �X
¼ Oðe; L�2Þ; (B8)

and since both e and L�2 are1, we have everywhere including in the core

L� 1) @p1

@ �X
 1: (B9)

Therefore, the long-wave approximation implies that in the core, the longitudinal pressure gradi-

ent is necessarily «1 and can be neglected in the core, since the inertial terms in the longitudinal

Eq. (B2) are O(1), thus leading to the simplified model used in this paper.

The determination of the influence length L, as a function of Re, can be obtained from the

UVA longitudinal momentum equation which can be written, using the previous scaling, as



U
@U

@ �X
þ �V

@U

@Y
¼ � @p0

@ �X
� d

@p�1
@ �X
þ L

Re

@

@Y
ð1þ KYÞ @U

@Y

� 	
; (B10)

where the order of magnitude for the inertial and the viscous terms are, respectively,

OðedÞ and O
Ld

Ree2

� �
: (B11)

In order that inertial and viscous terms in Eq. (B10) to be of the same order, the influence length

is, therefore,

L ¼ Ree
3: (B12)

A particular interesting case is when, see Eq. (B8)

L�2 ¼ e: (B13)

Thus at the Oð �XÞ scale, Eqs. (B12) and (B13) yield

L ¼ R1=7
e ; e ¼ R�2=7

e ; and
@p�1
@ �X
¼ O R�2=7

e

� �
: (B14)

We may say that the present work corresponds to the case where L�2 is of the order of e since our

numerical results show that the upstream influence length is of order Re1=7, therefore the long-

wave approximation is justified.

APPENDIX C: CURVATURE DISCONTINUITIES TREATMENT

In order to numerically treat curvature discontinuities, we use the following change of

variables:

v�1 ¼ v1 � u0

ðX

�1
kðnÞdn; (C1)

where �1 represents the inlet of the upstream straight channel.

Therefore, Eq. (40) for v1 can be written

v�1 ¼ �u0A�0ðXÞ where A�0ðXÞ ¼ A0ðXÞ þ
ðX

�1
kðnÞdn: (C2)

Similarly, Eq. (41) becomes

� u2
0A�00ðXÞ ¼ � @p1

@Y
; (C3)

Eq. (42) becomes

p1 ¼ A�00
ðY

Yc

u2
0ðY0Þ dY0þ BðXÞ; (C4)

and Eq. (43) becomes

@P1

@X
¼ dp0

dX
þ dA�000

ðY

Yc

u2
0ðY0Þ dY0þ dB0ðXÞ: (C5)

Thus, in the system to solve, neither k or k0 appears, but only
Ð X
�1 kðnÞdn.
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