Modelling of the fatigue cracking resistance of grid reinforced asphalt concrete by coupling fast BEM and FEM
Résumé
We present a computational modeling approach aimed at investigating the effect of fiber grid reinforcement on crack opening displacement and fatigue crack propagation. Grid reinforcements are modeled using elastic membrane finite elements, while the cracked concrete is treated using a symmetric boundary element method (BEM), which in particular allows easy geometrical modelling and meshing of cracks. The BEM is accelerated by the fast multipole method, allowing the handling of potentially large BEM models entailed by three-dimensional configurations hosting multiple cracks. Fatigue crack growth is modelled using the Paris law. The proposed computational approach is first verified on a reinforced cracked beam, and then applied to a three-dimensional configuration featuring a grid-reinforced asphalt pavement.
Origine | Fichiers produits par l'(les) auteur(s) |
---|