Optimal Control for Cleaner Hybrid Vehicles: A Backward Approach
Résumé
This work presents an application of the optimal control theory to find trade offs between fuel consumption and pollutant emissions (CO, HC, NOx) of sustaining hybrid vehicles. Both cold start and normal operations are considered. The problem formulation includes two state variables: battery state of energy and catalyst temperature; and three control variables: torque repartition between engine and motor, spark advance, and equivalence ratio. Optimal results were obtained by delaying the first engine crank after the urban part of the mission. The results show that a quick catalyst light off is performed. Once the catalyst is primed, special control parameters values are adopted to operate the engine.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|