Exploring Deep Registration Latent Spaces - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

Exploring Deep Registration Latent Spaces

Marie-Pierre Revel

Résumé

Explainability of deep neural networks is one of the most challenging and interesting problems in the field. In this study, we investigate the topic focusing on the interpretability of deep learning-based registration methods. In particular, with the appropriate model architecture and using a simple linear projection, we decompose the encoding space, generating a new basis, and we empirically show that this basis captures various decomposed anatomically aware geometrical transformations. We perform experiments using two different datasets focusing on lungs and hippocampus MRI. We show that such an approach can decompose the highly convoluted latent spaces of registration pipelines in an orthogonal space with several interesting properties. We hope that this work could shed some light on a better understanding of deep learningbased registration methods.
Fichier principal
Vignette du fichier
arxiv_submission.pdf (3.69 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03524105 , version 1 (13-01-2022)

Identifiants

Citer

Théo Estienne, Maria Vakalopoulou, Stergios Christodoulidis, Enzo Battistella, Théophraste Henry, et al.. Exploring Deep Registration Latent Spaces. DART in MICCAI 2021, the 24th International Conference on Medical Image Computing and Computer Assisted Intervention, Sep 2021, Strasbourg, France. pp.112-122, ⟨10.1007/978-3-030-87722-4_11⟩. ⟨hal-03524105⟩
108 Consultations
152 Téléchargements

Altmetric

Partager

More