Shock-vortex shear-layer interaction in the transonic flow around a supercritical airfoil at high Reynolds number in buffet conditions
Résumé
This paper provides a conceptual analysis and a computational model for how the unsteady ‘buffeting’ phenomenon develops in transonic, low incidence flow around a supercritical aerofoil, the OAT15A, at Reynolds number of 3.3 million. It is shown how a low-frequency buffet mode is amplified in the shock-wave region and then develops upstream and downstream interaction with the alternating von Kármán eddies in the wake past the trailing-edge as well as with the shear-layer, Kelvin–Helmholtz vortices. These interactions are tracked by wavelet analysis, autoregressive (AR) modelling and by Proper Orthogonal Decomposition. The frequency modulation of the trailing-edge instability modes is shown in the spectra and in the wall-pressure fluctuations. The amplitude modulation of the buffet and von Kármán modes has been also quantified by POD analysis. The thinning of the shear layers, both at the outer edge of the turbulent boundary layers and the wake, caused by an ‘eddy-blocking’ mechanism is modelled by stochastic forcing of the turbulent kinetic energy and dissipation, by small-scale straining of the higher-order POD modes. The benefits from thinning the shear-layers by taking into account the interfacial dynamics are clearly shown in the velocity profiles, and wall pressure distribution in comparison with the experimental data.
Origine | Fichiers produits par l'(les) auteur(s) |
---|