Uniqueness result for a weighted pendulum equation modeling domain walls in notched ferromagnetic nanowires - Archive ouverte HAL
Article Dans Une Revue Comptes Rendus. Mathématique Année : 2022

Uniqueness result for a weighted pendulum equation modeling domain walls in notched ferromagnetic nanowires

Radu Ignat

Résumé

We prove an existence and uniqueness result for solutions $\varphi$ to a weighted pendulum equation in $\mathbb{R}$ where the weight is non-smooth and coercive. We also establish (in)stability results for $\varphi$ according to the monotonicity of the weight. These results are applied in a reduced model for thin ferromagnetic nanowires with notches to obtain existence, uniqueness and stability of domain walls connecting two opposite directions of the magnetization.
Fichier principal
Vignette du fichier
weighted_pedulum_Ignat.pdf (356.76 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03517757 , version 1 (09-01-2022)

Identifiants

Citer

Radu Ignat. Uniqueness result for a weighted pendulum equation modeling domain walls in notched ferromagnetic nanowires. Comptes Rendus. Mathématique, 2022, 360 (G7), pp.819-828. ⟨10.5802/crmath.349⟩. ⟨hal-03517757⟩
59 Consultations
28 Téléchargements

Altmetric

Partager

More