Wedge indentation of elastoplastic solids — from single indentation to interaction between indenters
Résumé
Performance of metallic seals used between face-turned surfaces is related to their abilities to flow plastically in order to fill up cavities between wedge-shaped asperities. Double wedge indentation is therefore a simple way to investigate what happens at such a seal-flange interface. In this paper, finite element analyses of single and double wedge indentations are conducted. A particular attention is paid to the effects of hardening parameters on the resulting hardness. First, it is observed that single wedge indentation hardness can be well-approximated by the adaptation of analytic models initially developed for cone indentation problems. Second, it is shown that interaction between indentation-strain field during double wedge indentation starts once the bearing ratio is about 25%. It leads to a significant mean contact pressure increase, which is strongly dependent upon the strain hardening exponent. Eventually, for a bearing ratio higher than 75%, a plastic locking stage occurs, which leads to an exponential increase of the mean contact pressure. Practical applications of this work to indentation and sealing research fields are discussed.
Fichier principal
Article_indentation_interaction_versionFinale (5).pdf (1.64 Mo)
Télécharger le fichier
Origine | Fichiers produits par l'(les) auteur(s) |
---|