Path differentiability of ODE flows - Archive ouverte HAL
Article Dans Une Revue Journal of Differential Equations Année : 2022

Path differentiability of ODE flows

Résumé

We consider flows of ordinary differential equations (ODEs) driven by path differentiable vector fields. Path differentiable functions constitute a proper subclass of Lipschitz functions which admit conservative gradients, a notion of generalized derivative compatible with basic calculus rules. Our main result states that such flows inherit the path differentiability property of the driving vector field. We show indeed that forward propagation of derivatives given by the sensitivity differential inclusions provide a conservative Jacobian for the flow. This allows to propose a nonsmooth version of the adjoint method, which can be applied to integral costs under an ODE constraint. This result constitutes a theoretical ground to the application of small step first order methods to solve a broad class of nonsmooth optimization problems with parametrized ODE constraints. This is illustrated with the convergence of small step first order methods based on the proposed nonsmooth adjoint.
Fichier principal
Vignette du fichier
pathDiffFlow.pdf (342.42 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03516638 , version 1 (07-01-2022)

Identifiants

Citer

Swann Marx, Edouard Pauwels. Path differentiability of ODE flows. Journal of Differential Equations, 2022, ⟨10.1016/j.jde.2022.07.038⟩. ⟨hal-03516638⟩
240 Consultations
435 Téléchargements

Altmetric

Partager

More