Pré-Publication, Document De Travail Année : 2022

CONCENTRATION PHENOMENA IN FITZHUGH-NAGUMO'S EQUATIONS: A MESOSCOPIC APPROACH

Résumé

We consider a spatially extended mesoscopic FitzHugh-Nagumo model with strong local interactions and prove that its asymptotic limit converges towards the classical nonlocal reaction-diffusion FitzHugh-Nagumo system. As the local interactions strongly dominate, the weak solution to the mesoscopic equation under consideration converges to the local equilibrium, which has the form of Dirac distribution concentrated to an averaged membrane potential. Our approach is based on techniques widely developed in kinetic theory (Wasserstein distance, relative entropy method), where macroscopic quantities of the mesoscopic model are compared with the solution to the nonlocal reaction-diffusion system. This approach allows to make the rigorous link between microscopic and reaction-diffusion models.
Fichier principal
Vignette du fichier
paper-soumis.pdf (407.31 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03515748 , version 1 (06-01-2022)
hal-03515748 , version 2 (07-02-2022)
hal-03515748 , version 3 (21-02-2022)
hal-03515748 , version 4 (29-08-2022)

Identifiants

Citer

Alain Blaustein, Francis Filbet. CONCENTRATION PHENOMENA IN FITZHUGH-NAGUMO'S EQUATIONS: A MESOSCOPIC APPROACH. 2022. ⟨hal-03515748v2⟩
289 Consultations
214 Téléchargements

Altmetric

Partager

More