Combining local regularity estimation and total variation optimization for scale-free texture segmentation - Archive ouverte HAL Access content directly
Journal Articles IEEE Transactions on Computational Imaging Year : 2016

Combining local regularity estimation and total variation optimization for scale-free texture segmentation

(1) , (2) , (1) , (2)
1
2

Abstract

Texture segmentation constitutes a standard image processing task, crucial for many applications. The present contribution focuses on the particular subset of scale-free textures and its originality resides in the combination of three key ingredients: First, texture characterization relies on the concept of local regularity; Second, estimation of local regularity is based on new multiscale quantities referred to as wavelet leaders; Third, segmentation from local regularity faces a fundamental bias variance tradeoff. In nature, local regularity estimation shows high variability that impairs the detection of changes, while a posteriori smoothing of regularity estimates precludes from locating correctly changes. Instead, the present contribution proposes several variational problem formulations based on total variation and proximal resolutions that effectively circumvent this tradeoff. Estimation and segmentation performance for the proposed procedures are quantified and compared on synthetic as well as on real-world textures.
Fichier principal
Vignette du fichier
pustelnik_17138.pdf (1.48 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-03515307 , version 1 (06-01-2022)

Identifiers

Cite

Nelly Pustelnik, Herwig Wendt, Patrice Abry, Nicolas Dobigeon. Combining local regularity estimation and total variation optimization for scale-free texture segmentation. IEEE Transactions on Computational Imaging, 2016, 2 (4), pp.468-479. ⟨10.1109/TCI.2016.2594139⟩. ⟨hal-03515307⟩
0 View
0 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More