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Combining Local Regularity Estimation and Total

Variation Optimization for Scale-Free

Texture Segmentation
Nelly Pustelnik, Member, IEEE, Herwig Wendt, Member, IEEE, Patrice Abry, Fellow, IEEE,

and Nicolas Dobigeon, Senior Member, IEEE

Abstract—Texture segmentation constitutes a standard image
processing task, crucial for many applications. The present contri-
bution focuses on the particular subset of scale-free textures and
its originality resides in the combination of three key ingredients:
First, texture characterization relies on the concept of local regu-
larity; Second, estimation of local regularity is based on new multi-
scale quantities referred to as wavelet leaders; Third, segmentation
from local regularity faces a fundamental bias variance tradeoff.
In nature, local regularity estimation shows high variability that
impairs the detection of changes, while a posteriori smoothing of
regularity estimates precludes from locating correctly changes. In-
stead, the present contribution proposes several variational prob-
lem formulations based on total variation and proximal resolutions
that effectively circumvent this tradeoff. Estimation and segmenta-
tion performance for the proposed procedures are quantified and
compared on synthetic as well as on real-world textures.

Index Terms—Convex functions, image texture analysis, opti-
mization methods, wavelet transforms.

I. INTRODUCTION

A. Fractal Based Texture Characterization

T
EXTURE characterization and segmentation are long-

standing problems in Image Processing that received sig-

nificant research efforts in the past and still attract considerable

attention. In essence, texture consists of a perceptual attribute.

It has thus no unique formal definition and has been envisaged

using several different mathematical models, mostly relying on

the definition and classification of either geometrical or statis-

tical features, or primitives (cf., e.g., [1], [2] and references

therein for reviews). Texture analysis can be performed us-

ing either parametric models (ARMA [3], Markov [4], Wold

[5]) or non parametric approaches (e.g., time-frequency and

Gabor distributions [6], [7]). Amongst this later class, multiscale

representations (wavelets, contourlet, ...) have repeatedly been

reported as central in the last two decades (cf., e.g., [8]–[11]).
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They notably showed significant relevance for the large class of

scale-free textures, often well accounted for by the celebrated

fractional Brownian motion (fBm) model, on which the present

contribution focuses. Examples of such textures are illustrated

in Fig. 1(a). While scale free-like texture segmentation has been

mainly conducted by exploiting the statistical distribution of the

pixel amplitudes [12]–[14], the present paper investigates the

relevance of local regularity-based analysis.

Deeply tied to multiscale analysis, the fractal and multifractal

paradigms [15], [16] have been intensively used for scale-free

texture characterization (cf., e.g., [17], [18]). Scale-free textures

are essentially measured jointly at several scales, or resolutions.

From the evolution across scales of such multiscale measures,

semi-parametrically modeled as power-laws and thus insensi-

tive to texture resolution, scaling exponents are then extracted

and used as characterizing features. Such fractal features have

been extensively used for texture characterization, notably for

biomedical diagnosis (e.g., [19]–[22]), satellite imagery [23] or

art investigations [24], [25].

Often, in applications, it is assumed a priori that fractal prop-

erties are homogenous across the entire piece of texture to char-

acterize, thus permitting reliable estimates of the fractal features

(scaling exponents). However, in numerous situations, images

actually consist of several pieces, each with different textures,

and hence different fractal properties. Analysis becomes thus

far more complicated as it requires to segment the texture into

pieces (with unknown boundaries to be estimated) within which

fractal properties can be considered homogeneous (i.e., fractal

attributes are constant), yet unknown.

B. Local Regularity and Hölder Exponent

To address such situations, the present contribution elabo-

rates on the fractal paradigm, by a local formulation relying

on the notion of pointwise regularity. The local regularity of a

function (or sample path of a random field) at a given location

x ∈ R
2 is most commonly quantified by the Hölder exponent

h(x) [26]. It is defined as the scaling exponent extracted from
the a priori assumed power law dependence of the coefficients

of a multiscale representation X(a, x) (e.g., the modulus of
wavelet coefficients [11]), across the scales a, in the limit of

fine scales: X(a, x) ≃ η(x)ah(x) when a → 0. Theoretically,
the collection of Hölder exponents h(x) for all x ∈ R

2 yields

access to the multifractal properties (and spectrum) of the tex-

ture, and thus consists of a multiscale higher-order statistics

feature characterizing the texture [26], [27].



Wavelet coefficients are themost popularmultiscale represen-

tation used to perform fractal analysis. Yet, it has recently been

shown that, in the context of multifractal analysis and thus of

local regularity estimation, wavelet coefficients are significantly

outperformed by wavelet leaders, consisting of local suprema

of wavelet coefficients [26]–[29]. While the methods proposed

in the present contribution could be used with any multiscale

representation, reported and discussed results are thus explicitly

obtained using wavelet leaders.

For each location x, h(x) is classically estimated via a linear
regression in log X(a, x) versus log a coordinates and is thus

naturally framed into a classical bias-variance trade-off: Point-

wise estimates (relying only on the X(a, x) at sole location x)

show very large variances. Conversely, averaging in space-

windows either the X(a, x) or directly the estimates of h(x)
results in significant bias. In either case, the reliable and accurate

detection and localization of actual changes in h is precluded.

This explains why local regularity remains so far barely used

for signal or texture characterization and segmentation (see, a

contrario, [29]–[33]).

C. Goals, Contributions and Outline

In the present contribution, elaborating on preliminary at-

tempts [29], [32], the overall goal is to enable the actual use of

local regularity for performing the segmentation of scale-free

textures into areas with piece-wise constant fractal character-

ization. This strategy has the great advantage of being fully

nonparametric, since it does not require any explicit (statistical)

modeling of the textures to be segmented. To that end, it aims to

marry wavelet-leader based estimation of local regularity (with

no a priori smoothing) to segmentation procedures formulated as

variational problems and constructed on total variation (TV) op-

timization procedures and proximal based resolutions. Wavelet-

leader based estimation of Hölder exponents (as defined and

detailed in Section II) is first applied locally throughout the en-

tire image. Then, to go beyond a naive a posteriori smoothing

and threshold-based segmentation procedure (as described in

Section III-A), three different TV-based segmentation proce-

dures are theoretically devised: 1) Local estimates of h are sub-

jected a posteriori to a TV based denoising procedure, followed

by a thresholding step for segmentation (cf., Section III-B);

2) Local estimation of h is a priori embodied into the TV

based procedure aiming to favor piecewise constant estimates,

thresholding for segmentation is performed a posteriori (cf.,

Section III-C); 3) Local estimates of h are subjected a posteriori

to a TV based segmentation procedure, avoiding the denois-

ing/thresholding steps (cf., Section III-D). This later procedure

is inspired by the convex relaxation of the Potts model detailed

in [34], [35].

In Section IV, the performance of the proposed TV segmen-

tation procedures are compared and discussed for samples of

synthetic textures with piece-wise constant h, obtained from a

multifractional model, whose definition is customized by our-

selves to achieve realistic textures (described in Section II-D).

Several different geometries and different sets of values for the

regularity h of the different segments are considered. Further-

more, the impact of the TV-regularization parameter is investi-

gated. These procedures are also compared against two texture

segmentation procedures chosen because they are considered

state-of-the art in the dedicated literature [7], [36]. The pro-

posed approaches are further shown at work on samples chosen

within well accepted references texture databases, such as the

Berkeley Segmentation Dataset. Synthesis and analysis proce-

dures will be made publicly available at the time of publication.

Note that the present contribution significantly differs from the

preliminary works [29], [32] in that several methods involving

TV are designed, and these methods are unified and compared

on synthetic images and real-world textures.

II. HÖLDER EXPONENT ANDWAVELET LEADERS

A. Hölder Exponent and Local Regularity: Theory

Let f =
(
f(x)

)
x∈Ω

with x = (x1 , x2) denote the bounded

2D function (image) to analyze. The local regularity around

location x0 is quantified using the so-called Hölder exponent

h(x0), formally defined as the largestα > 0, such that there exist
a constant χ > 0 and a polynomial Px0

of degree lower than α,

such that ‖f(x) − Px0
(x)‖ ≤ χ‖x − x0‖

α in a neighborhood x

of x0 , where ‖ · ‖ denotes the Euclidean norm [26].When h(x0)
is close to 0, the image is locally highly irregular and close to
discontinuous. Conversely, large values of h(x0) correspond to
locations where the field is locally smooth. An example of a

texture with piece-wise constant function h(x) is illustrated in
Fig. 1(a).

Though the theoretical definition of the Hölder exponent

above can be used for the mathematical study of the regularity

properties of fields, it is also well-known that it turns extremely

uneasy for practical purposes and for the actual computation of

h from real world data. Instead, multiscale representations pro-

vide natural alternate ways for the practical quantification of h

[23], [27], [28], [30]. It is however nowadays well documented

that the sole wavelet coefficients do not permit to accurately

estimate local regularity [26], [27]. Early contributions on the

subject proposed to relate local regularity to the skeleton of the

continuous wavelet transform [11], [23], which however does

not permit to achieve estimation of h at each location x as tar-

geted here. Instead, it has been recently shown that an efficient

estimation of h can be conducted using wavelet leaders [26],

[27]. They are defined as local suprema of the coefficients of

the discrete wavelet transform (DWT) and thus inherit their

computational efficiency.

B. Hölder Exponent and Wavelet Leaders

1) Wavelet Coefficients: Let φ and ψ denote respectively the

scaling function and mother wavelet, defining a 1Dmultiresolu-

tion analysis [11]. Themother waveletψ is further characterized

by an integerNψ ≥ 1, referred to as the number of vanishing mo-

ments and defined as: ∀k = 0, 1, . . . , Nψ − 1,
∫
|t|kψ(t)dt ≡ 0

and
∫
|t|Nψ ψ(t)dt 6= 0. From these univariate functions, 2D

wavelets are defined as

{
ψ(0)(x) = φ(x1)φ(x2), ψ(1)(x) = ψ(x1)φ(x2),

ψ(2)(x) = φ(x1)ψ(x2), ψ(3)(x) = ψ(x1)ψ(x2).
(1)



Fig. 1. Illustration of the local regularity estimation from a multifractional data. Top row: (a) image f ; (b) the original local regularity h from which f is

generated, the area in black (resp. white) corresponds to a local regularity of 0.5 (resp. 0.7); (c) an estimation based on wavelet leaders; (d) smooth estimate of ĥ

described in Section III-A; (e) estimation using the method described in Section III-B; (f) estimation based on the method described in Section III-C. Bottom row:
histograms corresponding to top row.

The 2D-DWT (L1-normalized) coefficients of the image f are

defined as

Y
(m )
f (j, k) = 2−j

〈
f, ψ

(m )
j,k

〉
(2)

where {ψ
(m )
j,k (x) = 2−jψ(m )(2−jx − k), j ∈ N

∗, k ∈ N
2 ,

m = 0, 1, 2, 3} is the collection of dilated (to scales a = 2j )

and translated (to locations x = 2jk, k = (k1 , k2)) templates
of ψ(m )(x). Interested readers may refer to [11] for further
details.

2) Wavelet Leaders: The wavelet leader Lf (j, k), at scale
2j and location x = 2jk, is defined as the local supremum of

all wavelet coefficients Y
(m )
f (j′, k′) taken across all finer scales

2j ′
≤ 2j , within a spatial neighborhood [26]–[28]

L
(γ )
f (j, k) = sup

m={1,2,3}
λj ′ , k ′⊂3λj , k

|2jγ Y
(m )
f (j′, k′)| (3)

where {
λj,k = [k2j , (k + 1)2j )

3λj,k =
⋃

p∈{−1,0,1}2 λj,k+p .
(4)

The additional positive real parameter γ can be tuned to ensure

minimal regularity conditions for the case where the image f to

analyze can not be modeled as a strictly bounded 2D-function.

It is set to γ = 1 for the present contribution and not further
discussed. Interested readers are referred to [27], [28] for the

details on the role and impact of parameter γ.

It has been proven in [26] that the Hölder exponent h(x) at
location x is measured by wavelet leaders as

L
(γ )
f (j, k) ≃ η(x)2j (h(x)+γ ) when 2j → 0 (5)

for x ∈ λj,k , provided that Nψ is strictly larger than h(x).
Note that (5) implies that h can be estimated by linear re-

gressions as the slope of log2 L
(γ )
f versus j, cf., (6)–(9) below

(similarly, log η could be obtained as the intercept, yet does not

bear any information on local regularity and will hence not be

further considered here).

C. Hölder Exponent Estimation

In the present contribution, the estimation of the Hölder ex-

ponent is only performed using wavelet leaders L
(γ )
f (j, k), as

preliminary contributions [27]–[29], [32] report that wavelet

leader based estimation outperforms those based on other mul-

tiresolution quantities. To indicate that the estimation of h and

the segmentation procedures proposed in Section III below

could be applied using any other multiresolution quantity, e.g.,

the modulus of the 2D-DWT coefficients, a generic notation

X(j, k) is used instead of the specific L
(γ )
f (j, k). Yet, all nu-

merical results in Section IV are obtained with wavelet leaders,

X(j, k) = L
(γ )
f (j, k).

In the discrete setting, Hölder exponents are estimated for the

locations x = 2k associated with the finest scale j = 1, and we
make use of the notation · when we are dealing with matrices,
rather than with matrix elements, e.g.,

h =
(
h(k)

)
k∈K

, K = {1, . . . , N1} × {1, . . . , N2}.

As a preparatory step, the multiresolution quantity X is up-

sampled in order to obtain as many coefficients at scales j > 1
as at the finest scale j = 1

X̃(j, (k1 , k2)) = X(j, (⌈2−jk1⌉, ⌈2
−jk2⌉)) (6)

with 1 ≤ k1 ≤ N1 , 1 ≤ k2 ≤ N2 . With a slight abuse of

notation, we will continue writing X for the upsampled

multiresolution coefficients X̃ .

The relation (5) can obviously be rewritten as

log2 X(j, k) ≃ jh(k) + log2 η(k) (7)

which naturally leads to the use of (weighted) linear regressions

across scales for the estimation of h(x)

ĥ(k) =
∑

j

w(j, k) log2 X(j, k). (8)

Combining (7) and (8) above shows that, for each location k, the

weights w(j, k)must satisfy the following constraints to ensure



unbiased estimation [37]
∑

j

w(j, k) = 0 and
∑

j

jw(j, k) = 1. (9)

Though unusual, let us note that the weightsw(j, k) can in prin-
ciple depend on location k. This will be used in the segmentation

procedure defined in Section III-C. An illustration of such unbi-

ased estimates, with a priori chosen w(j, k) that do not depend
on location k, is presented in Fig. 1(c).

D. Piece-Wise Constant Local Regularity Synthetic Processes

To illustrate the behavior of the segmentation procedures pro-

posed in Section III as well as to quantify and compare seg-

mentation performances from the different procedures, use is

made of realizations of synthetic random fields with known and

controlled piece-wise constant local regularity. These are con-

structed as 2D multifractional Brownian fields [38], which are

among the most widely used models for mildly evolving local

regularity. Their definition has been slightly modified here to

ensure the realistic requirement of homogeneous local variance

across the entire image

f(x) = C(x)

∫

Ω

eıxξ−1

|ξ|h(x)+ 1
2

dW (ξ) (10)

where dW (ξ) is 2D Gaussian white noise and h(x) denotes the
prescribed Hölder exponent function. The normalizing factor

C(x) ensures that the local variance of f does not depend on

the location x. The details of the models do not matter much

for the present work, as we are only targeting the control of

local regularity of the field f(x). In the present contribution,
the function h(x) is chosen as piece-wise constant. Numerical
procedures permitting the actual synthesis of such fields have

been designed by ourselves. A typical sample field of such a

process is shown in Fig. 1(a).

III. LOCAL REGULARITY BASED IMAGE SEGMENTATION

In this section, we will detail the proposed procedures for

segmentation in homogeneous pieces of textures with constant

local regularity.

A. Local Smoothing

A straightforward attempt for obtaining labels consists in

thresholding the histogram of pointwise estimates obtained with

(8) and (9). However, such a solution yields estimates with

prohibitively large variance. This prevents the identification of

modes in the histogram that would correspond to the different

zones of constant local regularity, see Fig. 1(c) for an illustration.

The variance can be reduced a posteriori by a local spatial

smoothing with a convolution filter g:

ĥ
S

= g ∗ ĥ

where ĥ denotes the estimate described in Section II-C. For

instance, g can model a local spatial average. In this work, we

will consider a Gaussian smoothing parametrized by its standard

deviation σ. Note that particular cases of this smoothing can be

expressed as a variational formulation

ĥ
S

= arg min
h∈RN 1 ×N 2





∑

k∈K




j2∑

j=j1

w(j, k) log2 X(j, k) − h(k)




2

+ λ‖Γh‖2
F



 (11)

where ‖ · ‖F denotes the Frobenius norm and the transform Γ
and the regularization parameter λ > 0 are related to the convo-
lution kernel g. In particular, when λ = 0, the smoothed solution

ĥ
S
reduces to its non-smoothed counterpart ĥ. An example of

such an estimate with σ = 10 is given in Fig. 1(d). Clearly, the

variance of ĥ
S
is smaller than the variance of ĥ (see Fig. 1(c)

and (d)). Yet, it remains hard to identify separate modes in the

histogram. What is more, the local averaging introduces bias at

the edges of areas with constant h values, hence prevents any

accurate localization of the regularity changes in the image.

B. TV Denoising

To overcome these difficulties, we propose the use of TV

based optimization procedures, naturally favoring sharp edges,

instead of local spatial averages. It is well known that the

bounded TV space, that is the space of functions with bounded

ℓ1-norm of the gradient, allows to remove undesirable oscilla-

tions while it preserves sharp features. Rudin et al. [39] formal-

ize this recovery problem as a variational approach involving a

non-smooth functional referred to as TV. This has been widely

used in image processing for image quality enhancement [39],

[40] although it has been noted that it is not always well suited

for restoration purposes due to the piece-wise constant nature

of the restored images. In the present context of detection of

local regularity changes, precisely such a piece-wise constant

behavior of the solution is desired.

The corresponding minimization problem reads

ĥ
TV

= arg min
h∈RN 1 ×N 2





1

2

∑

k∈K




j2∑

j=j1

w(j, k) log2 X(j, k) − h(k)




2

+λTV(h)



 (12)

where

TV(h) =

N1 −1∑

k1 =1

N2 −1∑

k2 =1

√(
(D1h)(k1 , k2)

)2
+

(
(D2h)(k1 , k2)

)2

(D1h)(k1 , k2) = h(k1 + 1, k2 + 1) − h(k1 + 1, k2)

(D2h)(k1 , k2) = h(k1 + 1, k2 + 1) − h(k1 , k2 + 1).

The weights are a priori fixed, are independent of k, w(j, k) =
w(j), and satisfy the constraints (9). Here, λ > 0 models the
regularization parameter that tunes the piece-wise constant

behavior of the solution. Several techniques have been

proposed in the literature to solve (12), see for instance [40],



[41]. A forward-backward algorithm [42] applied on the dual

formulation of (12) is used here.

An example of ĥ
TV
is displayed in Fig. 1(e) for λ = 6. It

is piecewise constant and provides a satisfactory estimate of

the true regularity displayed in Fig. 1(b). Furthermore, the his-

togram of the estimates ĥ
TV
is pronouncedly peaked. Thresh-

olding hence enables labeling for a preset numberQ of classes.

C. Joint Estimation of Regression Weights and Local

Regularity

The solution ĥ
TV
described in the previous section is a two-

step procedure that addresses the bias-variance trade-off diffi-

culty by: (i) computing unbiased estimates of the Hölder expo-

nents ĥ fromX using (8) with fixed pre-defined weights w, and

(ii) extracting areas with constant Hölder exponent based on

these estimates ĥ using a variational procedure relying on TV.

In this section, we propose a one-step procedure that directly

yields piece-wise constant local regularity estimates ĥ from the

multiresolution quantities X . The originality of this approach

resides, on one hand, in the use of a criterion that involves di-

rectly X , instead of the intermediary local estimates ĥ, and a

TV-regularization; on other hand, in the fact that the weights w

are jointly and simultaneously estimated instead of being fixed

a priori. To this end, the weights w are subjected to a penalty

for deviation from the hard constraints (9).

1) Problem Formulation: The estimation (8) underlies a lin-

ear inverse problem in which the estimate ĥ of h needs to be

recovered from the logarithm of the multiresolution quantities

X of the image f . This inverse problem resembles a denoising

problem, yet including the additional challenge that a part of

the observations (the regression weights w) are unknown and

governed by the constraints (9), yielding the following convex

minimization problem:

(
ĥ
TVW

, ŵ
)
= arg min

h∈RN 1 ×N 2 ,

w∈RJ ×N 1 ×N 2

{
∑

k∈K




j2∑

j=j1

w(j, k) log2 X(j, k) − h(k)




2

+ λTV(h)+η1

∑

k∈K

dC1
(w(·, k))+η2

∑

k∈K

dC2
(w(·, k))

}
(13)

where J = j2 − j1 + 1. The functions dC1
and dC2

are

distances to the convex sets

C1 =
{
(ω(j1), . . . , ω(j2)) ∈ R

J |

j2∑

j=j1

ω(j) = 0
}
, (14)

C2 =
{
(ω(j1), . . . , ω(j2)) ∈ R

J |

j2∑

j=j1

jω(j) = 1
}
(15)

and are defined as

(∀v ∈ R
J )(∀i = 1, 2) dC i

(v) = ‖v − PC i
(v)‖2

where PC i
(v) = arg minω∈C i

‖v − ω‖2
2 denotes the projection

onto the convex set Ci . Note that the distances dC1
and dC2

provide the possibility to relax the hyperplane constraints C1

and C2 : The choice η1 = η2 = +∞ imposes (9) as hard

constraints (i.e., the intermediary quantities
∑j2

j=j1
w(j, k)

log2 X(j, k) are unbiased estimates of h(k)), while for η1 , η2 <

+∞, a violation of the constraints (9) is possible but penalized.
This adds a degree of freedom as compared to the standard esti-

mation procedure (8) and the solution ĥ
TV
in (12). Furthermore,

note that the joint estimation of h and w enables the use of spa-

tially varying weights w, which is otherwise impractical for a

priori fixed weights (here, the weights are tuned automatically).

2) Proposed Algorithm: The minimization problem (13)

is convex but non-smooth. In the recent literature dedicated to

non-smooth convex optimization, several efficient algorithms

have been proposed, see, e.g., [43]–[45]. Due to the gradient

Lipschitz data fidelity term and the presence of several regu-

larization terms (TV regularization, distances to convex sets),

one suited algorithm is given in [41], [46]–[48], referred to as

FBPD (for Forward-Backward Primal-Dual). This algorithm is

tailored here to the problem (13), ensuring convergence of a se-

quence (h[ℓ], w[ℓ])ℓ∈N to a solution of (13). The corresponding

iterations are given in Algorithm 1.

The notationD∗
1 andD∗

2 used inAlgorithm1 stands for the ad-

joint ofD1 andD2 , respectively, while the notation prox stands
for the proximity operator. The proximity operator associated to

a convex, lower semi-continuous function ϕ from H (where H
denotes a real Hilbert space) to ]−∞,+∞] is defined at the
point u ∈ H as proxϕ (u) = arg minv∈H

1
2 ‖u − v‖2 + ϕ(v).

The proximity operators involved in Algorithm 1 have a

closed-form expression (cf., [49]):

(∀ u ∈ R
2) prox λ

σ
‖·‖2 , 1

(u) = max(0, 1 −
λ

σ‖u‖ 2

)u. (16)



Moreover, according to [50, Proposition 2.8], if C denotes a

non-empty closed convex subset of R
J and if η > 0,

proxηdC
(u) =





u +
η(Pc(u) − u)

dC (u)
if dC (u) > η

PC (u) if dC (u) ≤ η
(17)

for every u ∈ R
J . For our purpose, C models the hyperplane

constraints C1 and C2 and PC1
and PC2

have a closed-form

expression given in [51], consequently proxηdC 1
and proxηdC 2

also have a closed-form expression.Note that the projection onto

the convex set PC is the proximity operator of the indicator

function ιC of a non-empty closed convex set C ⊂ H (i.e.,

ιC (x) = 0 if x ∈ C and +∞ otherwise).

An example of the result provided by the proposed procedure

is displayed in Fig. 1(f) for λ = 16 and η1 = η2 = 1000. It
yields a piece-wise constant estimate that very well reflects

the true regularity displayed in Fig. 1(b). Notably, the obtained

histogram is pronouncedly spiked and can easily be thresholded

in order to determine a labeling for the Q = 2 regions. For this
example, the strategy clearly outperforms the more classical TV

procedure of Section III-B.

D. Direct Estimation of Local Regularity Labels

The common feature of the approaches of Sections III-B and

III-C is that they aim at first providing denoised (piece-wise

constant) estimates of h. The labeling of regions with constant

pointwise regularity is then performed a posteriori by thresh-

olding of the global histogram. In this section, we propose a

TV-based algorithm that addresses the partitioning problem di-

rectly from the estimates ĥ obtained using (8) with a priori fixed

weights w and yields estimates of the areas with constant regu-

larity without recourse to intermediary denoising and histogram

thresholding steps.

1) Partitioning Problem: Formally, the problem consists

in identifying the areas (Ωq )1≤q≤Q of a domain Ω that are

associated with different values (µq )1≤q≤Q of h,

(∀q ∈ {1, . . . , Q})(∀x0 ∈ Ωq ) h(x0) ≡ µq

where
⋃Q

q=1 Ωq = Ω, and (∀q 6= p), Ωq ∩ Ωp = ∅ (by conven-
tion, µq ≤ µq+1). Most methods for solving the partitioning

problem are either based on the resolution of a nonconvex crite-

rion or require specific initialization [52]–[55]. Here, we adopt

the minimal partitions technique proposed in [56], which is

based on a convex relaxation of the Potts model and conse-

quently enables convergence to a global minimizer. According

to [57], our partitioning problem can be written as

minimize
Ω1 ,...,ΩQ

Q∑

q=1

∫

Ωq

ℓq (ĥ(x))dx + χ

Q∑

q=1

Per(Ωq )

subj. to

{⋃Q
q=1 Ωq = Ω,

(∀q 6= p), Ωq ∩ Ωp = ∅
(18)

where Per(Ωq ) measures the perimeter of region Ωq , ℓq (ĥ(x))
denotes the negative log-likelihood of the estimated local reg-

ularity associated with region Ωq , and the constraints ensure a

non-overlapping partition of (Ωq )1≤q≤Q . The parameter χ > 0
models the roughness of the solution.

2) Problem Formulation: Let Ω
q
∈{0, 1}N1 ×N2 , 1≤q≤Q,

denote a set ofQ partitionmatrices, i.e.,
∑Q+1

q=1 Ω
q
is anN1×N2

matrix with all entries equal to one. The discrete analogue of

(18) is the Potts model, which is known to be NP-hard to solve.

A convex relaxation, involving the TV, is given by [35], [57]

min
θ0 ,...,θQ

{
Q∑

q=1

∑

k∈K

(θq−1(k) − θq (k))

×ℓq

( j2∑

j=j1

w(j, k) log2 X(j, k)
)
+λ

Q−1∑

q=1

TV(θ
q
)

}

subj. to (∀k ∈ K) 1 ≡ θ0(k) ≥ . . . ≥ θQ (k) ≡ 0 (19)

where the weights are a priori fixed, are independent of k,

w(j, k) = w(j), and satisfy the constraints (9). The regular-
ization parameter λ > 0 impacts the number of areas created
for each single label. When λ is small, several unconnected ar-

eas can occur for a single label while the solution favors dense

regions when λ is large. A bound on the error of the solution of

the convex relaxation (19) is provided in [57] (for the special

case of two classes the solution coincides with the global mini-

mizer of the Ising problem [34]). It results that the solutions of

the minimization problem (19), denoted θ̂
q
∈ {0, 1}N1 ×N2 , are

binary matrices that encode the partition matrices Ω
q
such that

θ̂q−1(k) − θ̂q (k) =

{
1 if Ωq (k) = 1,

0 otherwise.
(20)

3) Algorithmic Solution: The functions involved in (19)

are convex, lower semi-continuous and proper, but the TV

penalty and the hard constraints are not smooth. The algorithm

proposed in [57] considers the use of PDEs. In [35], it is based

on a Arrow-Hurwicz type primal-dual algorithm but requires

inner iterations and upper boundedness of the primal energy

in order to improve convergence speed. Here we employ a

proximal algorithm in order to avoid inner iterations. Note

that in [58], a proximal solution was proposed for a related

minimization problem in the context of disparity estimation.

For the same reasons as those discussed in Section III-C,

we propose a solution based on the FBPD algorithm [47],

specifically tailored to the problem (19). The iterations are

detailed in Algorithm 2 and involve the hyperplane constraints

C̃q = {(θ
q−1

, θ
q
) | θq−1(k) ≥ θq (k), k ∈ K}

for every q = 1, . . . , Q with θ0(k) ≡ 1 and θQ (k) ≡ 0, k ∈ K.

The projections onto C̃q , denoted P
C̃ q

( · ), have closed-form

expressions given in [51].



4) Negative Log-Likelihood

In the present work we focus on the Gaussian negative log-

likelihood, i.e.,

ℓq




j2∑

j=j1

w(j, k) log2 X(j, k)




=

( ∑j2

j=j1
w(j, k) log2 X(j, k) − µq

)2

2σ2
q

where µq and σ2
q denote the mean value and the variance in

the region Ω
q
, respectively. The a priori choice of (µq )1≤q≤Q

is likely to strongly impact the estimates (θ̂
q
)1≤q≤Q . We there-

fore propose to alternate the estimation of (θ
q
)1≤q≤Q−1 and

(µq )1≤q≤Q . The values (µq )1≤q≤Q are first initialized equi-

distantly between the minimum and the maximum values of

ĥ. Then Algorithm 2 is run until convergence and the values

(µq )1≤q≤Q are re-estimated on the estimated areas (Ω̂
q
)1≤q≤Q .

We iterate until stabilization of the estimates. The variances are

fixed to σ2
q = 1

2 here.

IV. SEGMENTATION PERFORMANCE ASSESSMENT

Performance of the proposed procedures are qualitatively and

quantitatively assessed using both synthetic scale-free textures

(using realizations of 2D multifractional Brownian fields, de-

scribed in Section II-D, with prescribed piecewise constant lo-

cal regularity values) and real-world textures, chosen in ref-

erence databases. Sample size is set to N × N = 512 × 512

(hence, N1 = N2 = 256 due to the decimation operation in
the DWT). Analysis is conducted using a standard 2D–DWT

with orthonormal tensor product Daubechies mother wavelets

with Nψ = 2 vanishing moments and 4 decomposition levels,
(j1 , j2) = (1, 4). The labeling solutions obtained with the algo-
rithms based on local smoothing, TV denoising, joint estima-

tion of regularity and weights and direct local regularity labels

are referred to as Ω̂
S
, Ω̂

TV
, Ω̂

TVW
and Ω̂

RMS
, respectively. For

the algorithms involving a histogram thresholding step, thresh-

olds are automatically set at the local minima between peaks

of (smoothed) histograms (and, when less local minima than

desired labels are detected, at the position of the largest peak).

A. Quantitative Performance Assessment

The proposed local regularity based labeling procedures are

first compared using ten independent realizations of multifrac-

tional Brownian fields withQ = 2 areas of constant regularities
h1 and h2 , respectively, given by the ellipse model shown in

Fig. 1(b) (h2 corresponding to the inside of the ellipse). Per-

formance are evaluated for a large range of values of the reg-

ularization parameter λ (respectively, standard deviation σ for

the local Gaussian smoothing based solution). To assess perfor-

mance, misclassified pixel rate is evaluated as follows: The area

with the largest median of estimated local regularity values is

associated with the area of the original mask with largest regu-

larity, the area with the second largest median of estimated local

regularity values with the area of the original mask with second

largest regularity value, and so on. Achieved results are reported

in Fig. 2(a) (for h1 = 0.5 and h2 = 0.7) and (b) (h1 = 0.6 and
h2 = 0.7), respectively.

The three TV-based strategies (Ω̂
TV
, Ω̂

TVW
and Ω̂

RMS
) clearly

outperform the local smoothing based solution Ω̂
S
over a large

range of λ. The local smoothing procedure yields at best pixel

misclassification rates of 12% (Fig. 2(a)) and 28% (Fig. 2(b)). In
contrast, the best results obtained with the TV-based strategies

drop down to less than 7% (Fig. 2(a)) and 12% (Fig. 2(b)) of

misclassified pixels.

Among the TV-based algorithms, Ω̂
TVW

, relying on the joint

estimation of regularity and weights, is the least sensitive to the

precise selection of the regularization parameter λ and consis-

tently yields the best performance. Notably, it outperforms all

other procedures when the difference in regularity |h2 − h1 | is
small (Fig. 2(b)). For segmentation, the performance of the TV

procedure (Ω̂
TV
) is similar to that of Ω̂

TVW
, yet Ω̂

TV
is more

sensitive to the precise tuning of λ and yields large errors when

λ is chosen too small or too large. For these cases, Ω̂
TV
de-

tects only one area, while Ω̂
TVW

still segments the texture into

two areas. Solution Ω̂
RMS

also is more robust to the tuning of

λ, compared to Ω̂
TV
, yet shows slightly decreased misclassi-

fication rates. Furthermore, Ω̂
RMS

has the practical advantage

of being the only solution that does not require the practically

cumbersome step of thresholding histograms (hence avoiding

the empirical tuning of binning and smoothing parameters,

for instance).



Fig. 2. Percentage of misclassified pixels as a function of penalty parameter λ (respectively, standard deviation σ for Ω̂
S
): median (solid red) and upper and

lower quartile (dashed red) for ten realizations for Ω̂
S
, Ω̂

TV
, Ω̂

TVW
and Ω̂

RMS
(from left to right, respectively). Subfigure (a): (h1 , h2 ) = (0.5, 0.7); Subfigure

(b): (h1 , h2 ) = (0.6, 0.7).

To illustrate, results obtained by each of the proposed pro-

cedures for the value of λ (or σ) leading to a minimal clas-

sification error (marked with symbols in Fig. 2) are reported

in Fig. 3 when considering one randomly selected realiza-

tion of multifractional Brownian fields with Q = 2 areas of
constant regularity defined by (h1 , h2) = (0.5, 0.7) (top) and
(h1 , h2) = (0.6, 0.7) (bottom), respectively. Fig. 3(a) shows the
analyzed textures, illustrating that the two texture areas can not

be distinguished visually. The local smoothing based labeling

results Ω̂
S
are clearly the poorest, both for (h1 , h2) = (0.5, 0.7)

and (h1 , h2) = (0.6, 0.7). In contrast, all three TV-based solu-

tions Ω̂
TV
, Ω̂

TVW
and Ω̂

RMS
yield satisfactory performance. So-

lution Ω̂
TVW

achieves the lowest misclassification error and is

also visually themost convincing in terms of segmented regions,

at the price though of the largest computational cost. Solution

Ω̂
TV
shows only slightly larger misclassification rates sand may

be preferred in certain applications for its significantly smaller

computational cost. Solution Ω̂
RMS

shows larger misclassifica-

tion rate when the difference in regularity decreases.

Moreover, the above analysis is complemented by the study

of a situation with of Q = 3 areas (constant local regularities
(h1 , h2 , h3) = (0.2, 0.4, 0.7)), with a more complex geometry,
including notably corners. The regularity mask, texture and la-

beling results are illustrated in Fig. 4. The local smoothing

solution Ω̂
S
fails to distinguish the three areas, yielding several

disconnected domains, while all proposed TV based approaches

correctly and satisfactorily detect the three distinct areas. Solu-

tions Ω̂
TV
and Ω̂

TVW
show similar results and again have slightly

smaller classification error rates than Ω̂
RMS

. None of the pro-

posed procedures recovers the two sharp corners of the original

regularity mask. In particular, Ω̂
TV
and Ω̂

TVW
yield segmented

areas with pronouncedly smooth borders.

In conclusion, the lowest misclassification rates are achieved

by Ω̂
TVW

, followed by Ω̂
TV
and Ω̂

RMS
, and worst results are

obtained with Ω̂
S
. The quality of the solutions obtained with the

different strategies are related to their complexity, reflected by

computation times. While Ω̂
S
is obtained in less than 1 second,

the fastest TV based solution is Ω̂
TV
, with a computational

time of about 10 seconds in our experiment, followed by Ω̂
RMS

with a 1-minute computational time. The solution achieving the

best performance, Ω̂
TVW

, further requires around 3 minutes of

computational time.

In order to evaluate more accurately the behaviour of the

proposed method as a function of ∆h = h2 − h1 , additional

experiments are conducted in which h2 = h1 + ∆h for ∆h =
{0.1, 0.2, 0.3, 0.4}. Average (over ten realizations) pixel mis-
classification rates for two different situations, h1 = 0.2 and
h1 = 0.5, are reported in Fig. 5 (the reported results are ob-
tained with values of λ that lead to best performance for the

configurations). The results based on TV are displayed in hot

colors (orange/pink/red) while the results obtained with the ba-

sic smoothing is displayed in blue. As expected, the larger∆h,

the better the performance for all methods. Moreover, the re-

sults lead to the conclusion that the TV based approaches have

superior performance and that the method that estimates si-

multaneously the weights and the Hölder exponent, i.e., Ω̂
TVW

,

yields overall smallest misclassification rates.

B. Comparisons With State-of-the-art Segmentation

Procedures and Application to Real-World Textures

1) Comparisons with State-of-the-art Segmentation Proce-

dures: Comparisons against two texture segmentation pro-

cedures, chosen because considered state-of-the-art in the

dedicated literature, are now discussed. The first approach [36]



Fig. 3. Results obtained with the different proposed solutions compared to a basic smoothing of ĥ and the state-of-the-art texture segmentation approaches

proposed in [36] and [7]. Top row: (h1 , h2 ) = (0.5, 0.7); bottom row: (h1 , h2 ) = (0.6, 0.7). (a) Data f . (b) ĥ
L
.(c) [36]. (d) [7]. (e) Ω̂

S
. (f) Ω̂

TV
.

(g) Ω̂
TVW

. (h) Ω̂
RMS

.

Fig. 4. Results of the labeling obtainedwith the different proposed solutionswhenQ = 3. (a) Data f . (b) ĥ
L
. (c) [36]. (d) [7]. (e) Ω̂

S
. (f) Ω̂

TV
. (g) Ω̂

TVW
. (h) Ω̂

RMS
.

Fig. 5. Results obtained with the different proposed solutions (in red) compared to a basic smoothing (in blue) as a function of∆h = h2 − h1 .

relies on a multiscale contour detection procedure using bright-

ness, color and texture (using textons) information followed

by the computation of an oriented watershed transform. The

second approach [7] relies on Gabor coefficients as features

followed by a feature selection procedure relying on a matrix

factorization step. Results are reported in Figs. 2, 3, and 4 and

unambiguously show that such approaches lead to much poorer

segmentation performance as compared to the proposed TV-

based procedures and appear ineffective for the segmentation of

scale-free textures.

2) Real-World Textures: To assess the level of generality of

the TV-based segmentation procedures, their performance are

quantified and compared on sample textures chosen randomly

from a large database considered as reference in the dedicated

literature, the Berkeley Segmentation Dataset.1 No ground truth

segmentation is available for that database. Samples are shown

in Figs. 6 and 7 together with local regularity TV based esti-

mation and segmentation procedure outcomes. For comparison,

results achieved with the two state-of-the-art approaches in [36]

and [7] are also displayed. For both examples, we provide two

types of results: a 2-label segmentation result (Q = 2, Figs. 6
and 7, top rows) and the Q-labels segmentation results where,

1https://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds



Fig. 6. Experiments on real data: Image extracted from the Berkeley Segmentation Database.

Fig. 7. Experiments on real data: Image extracted from the Berkeley Segmentation Database.



for the state-of-the-art methods,Q had been tuned empirically in

order to yield the visually most convincing solution, and where

the solutions Ω̂
TV
and Ω̂

TVW
are deduced from ĥ

TV

L
and ĥ

TVW

L
(Figs. 6 and 7, bottom rows). For both examples, we observe that

the outcomes of the segmentation resulting from TV approaches

lead to satisfactory results: for Q = 2, a meaningful region is
extracted, which is further refined when Q > 2. When compar-
ing to the state-of-the-art methods [36] and [7], we observe that

all the methods lead to similarly meaningful yet not necessarily

identical segmentation results. This is a satisfactory outcome

regarding the general level of applicability of the proposed TV-

based segmentation approaches since there is no reason a priori

to believe that the samples in the Berkeley Segmentation Dataset

are perfectly scale-free textures.

V. CONCLUSION AND PERSPECTIVES

We proposed, to the best of our knowledge, the first fully op-

erational nonparametric texture segmentation procedures that

rely on the concept of local regularity. The segmentation pro-

cedures was designed for the class of piecewise constant local

regularity images. The originality of the proposed approach

resided in the combination of wavelet leaders based local reg-

ularity estimation and proximal solutions for minimizing the

convex criterion underlying the segmentation problem. Three

original and distinct proximal solutions were proposed, all re-

lying on a TV penalization and proximal based resolution: TV

denoising of local regularity estimates followed by thresholding

for label determination; TV penalized joint estimation of local

regularity and estimation weights followed by thresholding for

label determination; direct labeling of local regularity estimates

using a TV based partitioning strategy. The performance of

the procedures was validated using stochastic Gaussian model

processes with prescribed region-wise constant local regular-

ity and illustrated using realistic model images with real-world

textures. All proposed labeling procedures yielded satisfactory

results. They significantly improved over labeling based directly

on (smoothed) local regularity estimates, at the price though of

increased computational costs. Procedure ĥ
RMS

further avoided

to devise a detailed procedure for histogram thresholding, yet

yielding slightly poorer results compared to ĥ
TVW

.

When constant regularity areas were labeled, regularity can

be re-estimated a posteriori by averaging within each area the

X(a, k) prior to performing linear regressions [27].
The proposed procedures are currently being used for the

analysis of biomedical textures, with encouraging preliminary

results. Comparisons with alternative texture characterization

features, such as local entropy rates, are under investigation.

Future work will include investigating in how far the pro-

posed approach can be adapted to handle different regularity

models, such as images with piecewise smooth local regularity.

Furthermore, the analysis of textures from real-world applica-

tions would benefit from substituting piecewise constant Hölder

exponents with piecewise constantmultifractal spectra, provid-

ing richer and more realistic models, at the price, yet, of more

severe estimation and segmentation issues.
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[49] G. Peyré and J. Fadili, “Group sparsity with overlapping partition func-
tions,” in Proc. Eur. Signal Process. Conf., Barcelona, Spain, Aug. 2011,
pp. 303–307.

[50] P. L. Combettes and J.-C. Pesquet, “A proximal decompositionmethod for
solving convex variational inverse problems,” Inverse Problems, vol. 24,
no. 6, 2008, Art. no. 065014.

[51] S. Theodoridis, K. Slavakis, and I. Yamada, “Adaptive learning in a world
of projections,” IEEE Signal Process. Mag., vol. 28, no. 1, pp. 97–123,
Jan. 2011.

[52] M.Kass,A.Witkin, andD. Terzopoulos, “Snakes:Active contourmodels,”
Int. J. Comput. Vis., vol. 1, no. 4, pp. 321–331, 1988.

[53] D. Mumford and J. Shah, “Optimal approximations by piecewise smooth
functions and associated variational problems,” Commun. Pure Appl.

Math., vol. 42, pp. 577–685, 1989.
[54] V. Caselles, R. Kimmel, and G. Sapiro, “Geodesic active contours,” Int. J.

Comput. Vis., vol. 22, no. 1, pp. 61–79, 1997.
[55] Y. Boykov and M.-P Jolly, “Interactive graph cuts for optimal boundary

& region segmentation of objects in ND images,” in Proc. IEEE Int. Conf.

Comput. Vis., 2001, pp. 105–112.
[56] A. Chambolle, D. Cremers, and T. Pock, “A convex approach to minimal

partitions,” SIAM J. Imag. Sci., vol. 5, no. 4, pp. 1113–1158, 2012.
[57] D. Cremers, P. Thomas, K. Kolev, and A. Chambolle, “Convex relax-

ation techniques for segmentation, stereo and multiview reconstruction,”
in Markov Random Fields for Vision and Image Processing, A. Blake,
P. Kohli, and C. Rother, Eds. Boston, MA, USA: MIT Press, 2011.

[58] S. Hiltunen, J.-C. Pesquet, and B. Pesquet-Popescu, “Comparison of two
proximal splitting algorithms for solving multilabel disparity estimation
problems,” in Proc. Eur. Signal Process. Conf., Bucharest, Romania,
Aug. 2012, pp. 1134–1138.

Nelly Pustelnik (S’08–M’11) received the Ph.D. degree in signal and image
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