Interactive segmentation: a scalable superpixel-based method - Archive ouverte HAL
Article Dans Une Revue Journal of Electronic Imaging Année : 2017

Interactive segmentation: a scalable superpixel-based method

Résumé

This paper addresses the problem of interactive multiclass segmentation of images. We propose a fast and efficient new interactive segmentation method called superpixel alpha fusion (SaF). From a few strokes drawn by a user over an image, this method extracts relevant semantic objects. To get a fast calculation and an accurate segmentation, SaF uses superpixel oversegmentation and support vector machine classification. We compare SaF with competing algorithms by evaluating its performances on reference benchmarks. We also suggest four new datasets to evaluate the scalability of interactive segmentation methods, using images from some thousand to several million pixels. We conclude with two applications of SaF.
Fichier principal
Vignette du fichier
mathieu_19167.pdf (1.57 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03512910 , version 1 (05-01-2022)

Identifiants

Citer

Bérengère Mathieu, Alain Crouzil, Jean-Baptiste Puel. Interactive segmentation: a scalable superpixel-based method. Journal of Electronic Imaging, 2017, 26 (6), pp.1-18. ⟨10.1117/1.JEI.26.6.061606⟩. ⟨hal-03512910⟩
24 Consultations
26 Téléchargements

Altmetric

Partager

More