Unbounded-energy solutions to the fluid+disk system and long-time behavior for large initial data - Archive ouverte HAL
Article Dans Une Revue Comptes Rendus. Mathématique Année : 2023

Unbounded-energy solutions to the fluid+disk system and long-time behavior for large initial data

Résumé

In this paper, we analyse the long-time behavior of solutions to a coupled system describing the motion of a rigid disk in a 2D viscous incompressible fluid. Following previous approaches, we look at the problem in the system of coordinates associated with the center of mass of the disk. Doing so, we introduce a further nonlinearity to the classical Navier Stokes equations. In comparison with the classical nonlinearities, this new term lacks time and space integrability, thus complicating strongly the analysis of the long-time behavior of solutions. We provide herein two refined tools : a refined analysis of the Gagliardo-Nirenberg inequalities and a thorough description of fractional powers of the so-called fluid-structure operator. On the basis of these two tools we extend previous decay estimates to arbitrary initial data and show local stability of the Lamb-Oseen vortex.
Fichier principal
Vignette du fichier
GF_MHr2.1.pdf (346.93 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03511566 , version 1 (05-01-2022)
hal-03511566 , version 2 (08-08-2022)

Licence

Identifiants

Citer

Guillaume Ferriere, Matthieu Hillairet. Unbounded-energy solutions to the fluid+disk system and long-time behavior for large initial data. Comptes Rendus. Mathématique, 2023, Tome 361 (2023), pp. 453-485. ⟨10.5802/crmath.357⟩. ⟨hal-03511566v2⟩
124 Consultations
65 Téléchargements

Altmetric

Partager

More