New convergent sequences of approximations to Stieltjes' constants - Archive ouverte HAL
Article Dans Une Revue Journal of Mathematical Analysis and Applications Année : 2023

New convergent sequences of approximations to Stieltjes' constants

Tanguy Rivoal

Résumé

Stieltjes' constants $\gamma_n$ are the coefficients in the Laurent series for the zeta function $\zeta(s)$ at the pole $s=1$. We present new sequences of approximations for Stieltjes' constants obtained by generalizing the ``remainder Pad\'e approximants'' method introduced by the first named author in 1996. Here, we replace Pad\'e approximants (of which poles are connected to zeros of orthogonal polynomials) by Pad\'etype approximants introduced by Brezinski of which poles are chosen {\em a priori}. The particular case $\gamma_1$ is also treated separately using ordinary Pad\'e approximants. The last section of the paper deals with approximations of the Riemann zeta function in the complex plane.
Fichier principal
Vignette du fichier
RTPA.pdf (389.52 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03508294 , version 1 (03-01-2022)

Identifiants

Citer

Marc Prévost, Tanguy Rivoal. New convergent sequences of approximations to Stieltjes' constants. Journal of Mathematical Analysis and Applications, 2023, 524 (2), pp.Id 127091. ⟨10.1016/j.jmaa.2023.127091⟩. ⟨hal-03508294⟩
127 Consultations
143 Téléchargements

Altmetric

Partager

More