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FAST CONVERGENT SEQUENCES OF APPROXIMATIONS TO

STIELTJES' CONSTANTS

M. PRÉVOST AND T. RIVOAL

Abstract. Stieltjes' constants γn are the coe�cients in the Laurent series for the zeta
function ζ(s) at the pole s = 1. We present new sequences of approximations for Stieltjes'
constants obtained by generalizing the �remainder Padé approximants� method introduced
by the �rst named author in 1996. Here, we replace Padé approximants (of which poles
are connected to zeros of orthogonal polynomials) by Padé type approximants introduced
by Brezinski of which poles are chosen a priori. The particular case γ1 is also treated
separately using ordinary Padé approximants. The last section of the paper deals with
approximations of zeta function in the complex plane.

1. Introduction

For a ∈ C, <(a) > 0, the Hurwitz zeta function is de�ned as

ζ(s, a) =
∞∑
k=0

1

(k + a)s
,

where the Dirichlet series on the right hand side is convergent for <(s) > 1. It can be
analytically continued to s ∈ C \ {1}, with a pole at s = 1. The generalized Stieltjes
constants γn(a) occur as coe�cients in the Laurent series expansion of ζ(s, a) at the pole
s = 1:

ζ(s, a) =
1

s− 1
+
∞∑
`=0

(−1)`

`!
γ`(a)(s− 1)`.

There are numerous representations for them, for instance

γ`(a) = lim
m→∞

{
m∑
k=0

ln`(k + a)

k + a
− ln`+1(m+ a)

`+ 1

}
, ` = 0, 1, 2, . . . , a 6= 0,−1,−2, . . .

If a = 1, the generalized Stieltjes constant γ`(a) is the usual Stieltjes constant γ`. More
speci�cally, γ0 is Euler's constant, usually denoted as γ.
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In [9], using the Digamma function

Ψ(z) :=
Γ′(z)

Γ(z)
= −γ +

∞∑
n=0

(
1

n+ 1
− 1

n+ z

)
for z ∈ C\Z≤0, the authors constructed approximations of γ as follows. LetHn :=

∑n
j=1 1/j

and Φ(n) := γ − (Hn − ln(n)) + 1
2n
. It is known that

Φ(n) ∼
∞∑
k=0

B2k+2

2k + 2

1

n2k+2
, (n→ +∞) (1)

where the asymptotic expansion is understood in the Poincaré sense.
The remainder Padé approximation method consists in approximating Euler's constant

by the sum (Hn − ln(n) − 1
2n

) + [p/q]Φ̂ where [p/q] is a well-chosen Padé approximant of
the formal power series

Φ̂(z) :=
∞∑
k=0

B2k+2

2k + 2
(−z)k.

More precisely, the main result of [9] is that for r ∈ Q≥0, 0 < r < 2e such that rn ∈ N, we
have

γ = Hn − ln(n)− 1

2n
+

1

n2
[rn− 1/rn]Φ̂(−1/n2) + δr,n

where lim supn→+∞,rn∈N |δr,n|1/n ≤ (r/2e)4r. The convergence of the sequence of Padé ap-

proximant [rn− 1/rn]Φ to the function Φ̂ is a consequence of the following facts: the poles
of [rn− 1/rn]Φ̂ lie on [0,+∞) and the Padé approximant is computed at −1/n2 < 0.
Being now interested in Stieltjes' constants, we want to use a similar technique. An

immediate di�culty arises: the denominators of the Padé approximations for the remainder
of γ` do not necessarily have their roots in [0,+∞), which prevent us from obtaining any
type of convergence. An interesting technic to avoid this di�culty is to make use of Padé
type approximants instead of Padé approximants. In this case, it is possible to choose the
denominator of the Padé type approximants and thus the poles of the approximant. A
possible drawback is that the convergence is a priori slower though, as we shall see, it is
reasonably fast in our situation.
We shall use the following property of γ`(n). For any integer n ≥ 1, we have

γ` = γ`(n) +
n−1∑
j=1

ln`(j)

j
(2)

which is a consequence of the functional equation ζ(s, n) = ζ(s)−
∑n−1

j=1 j
−s. The Jensen-

Franel integral formula [4] provide a closed form formula for the numbers γ`:

γ`(n) =
ln`(n)

2n
− ln`+1(n)

`+ 1
− i
∫ ∞

0

dx

e2πx − 1

{
(log`(n− ix))

n− ix
− (log`(n+ ix))

n+ ix

}
(3)
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for every `, n ∈ N, and where log is de�ned with its principal determination as everywhere
in this paper. We shall use instead the following generalized asymptotic expansion (see
�3.1): for any ` ∈ N, we have as n→ +∞

γ` ∼
n−1∑
j=1

ln`(j)

j
+

ln`(n)

2n

− ln`+1(n)

`+ 1
−
∑̀
k=0

`! ln`−k(n)

(`− k)!

∞∑
m=0

1

n2m+2

B2m+2

(2m+ 2)!
S(2m+ 2, k + 1), (4)

where the S(n, k) are Stirling's numbers of the �rst kind de�ned by x(x−1) · · · (x−n+1) =∑n
k=0 S(n, k)xk. Let us de�ne the formal power series Φk(z), k ∈ N, by

Φk(z) :=
∞∑
m=0

(−1)m+1B2m+2

(2m+ 2)!
S(2m+ 2, k + 1)zm.

The central point of the paper is to replace the asymptotic series Φk(−1/n2) in (4)
by some Padé type approximants and not by some Padé approximants as in our previous
papers. The basic properties of Padé type approximants are recalled in Section 2 and below
(µ/ν)f (z) denotes the Padé type approximant of f(z) with numerator and denominator
of degree ≤ µ and ≤ ν respectively. The denominator is a speci�ed polynomial of degree
ν and the numerator is then determined such that the Taylor expansion of the rational
fraction matches the Taylor expansion of f(z) up to zµ at z = 0. We shall consider the
polynomial

Trn(α, x)

:=
(−1)rn(2rn)!(α)2rn+1

(2rn+ 2α)2rn+1

2rn∑
j=0

(
2rn+ 1

j + 1

)(
2rn+ 2α + j

j + 1

)(
±i
√
x− 1

j

)
/

(
α + j

j + 1

)
as the generating polynomial (see �2) for the denominators of the Padé type approximants
(rn+ p/rn)Φk , where α := p+ 4. It is a special case of Wilson polynomials [11]; see �4 for
details. Note that the de�nition of Trn(α, x) is independent of the choice of the sign ±; we
will take advantage of this fact in �6.

Theorem 1. Let r ∈ Q≥0 be such that rn ∈ N. De�ne µr := 2r
r+
√

1+r2 . Then for every

integers n ≥ 1 and p ≥ `/2,

γ` =
n∑
j=1

ln`(j)

j
− ln`+1(n)

`+ 1
− ln`(n)

2n
+
`!

n2

∑̀
k=0

ln`−k(n)

(`− k)!
(rn+ p/rn)Φk(−1/n2) + δrn,p,` (5)

where

lim sup
n→+∞,rn∈N

|δrn,p,`|1/n ≤
(

2r − µr
2r + µr

)2r

(1− µr) < 1.
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Remark. Even tought this is not the point of view of the present paper (which remains at a
theoretical level because no complexity analysis was performed), it could be interesting to
compare the algorithms obtained in [1, 5] for the high precision computation of Stieltjes's
constants with the one that could be obtained from Theorem 1.
We presented Corollary 2 in [9] as an e�ective version of Stirling's formula. It is also

possible to view this corollary in a dual way as an approximation of log
√

2π in the spirit
of Theorem 1 above:

log
√

2π = ln(n!)− n ln(n) + n− 1

2
ln(n)− 1

12n
+

1

n3
[rn− 1/rn]Ω(−1/n2) + δ̂r,n.

where lim supn→+∞,rn∈N |δ̂r,n|1/n ≤ (r/2e)4r and Ω(z) := −
∑∞

n=0(−z)nB2n+4/((2n+4)(2n+

3)) is a formal series similar to Φ̂.

The paper is organized as follows. In �2, we recall the de�nition of Padé type approxi-
mant and the important formula of the error. In �3, we collect various results needed for
the proof of Theorem 1, in particular a moment interpretation of the coe�cients of Φk

involving some explicit weight functions wk, for which we �nd an upper bound in term of
Wilson weight. The properties of the latter are recalled in �4. Theorem 1 is proved in �5.
In �6, we provide explicit expression of the Padé type approximants in Theorem 1. Finally,
we re�ne our method for Stieltjes' constant γ1 in �7 (Theorem 2) and we also apply it to
the Riemann zeta function in �8 (Theorem 3).

2. Padé type approximants

In this section, we remind the de�nition and basic properties of Padé type approximants.
See [6, Chapter 1] for more details.

Let Vn be a polynomial of degree n and f(z) =
∫∞

0
µ(x)
1−zxdx where the weight function

µ(x) is not necessarily positive on [0,+∞) and is such that
∫∞

0
xn|µ(x)|dx < ∞ for all

integer n ≥ 0. Vn will be called the generating polynomial of the Padé type approximant.
Let Wn−1 be the associated polynomial of Vn with respect to the weight µ: by de�nition,

Wn−1(z) :=

∫ ∞
0

Vn(x)− Vn(z)

x− z
µ(x)dx.

and it is of degree ≤ n− 1.

We set W̃n−1(z) := zn−1Wn−1(1/z) and Ṽn(z) := znVn(1/z), so that

f(z)− W̃n−1(z)

Ṽn(z)
=

∫ ∞
0

µ(x)

1− zx
dx− z−1

V (z−1)

∫ ∞
0

V (x)− V (z−1)

x− z−1
µ(x)dx

=

∫ ∞
0

µ(x)

1− zx
dx+

∫ ∞
0

Vn(x)/Vn(z−1)− 1

1− zx
µ(x)dx

=
zn

Ṽn(z)

∫ ∞
0

Vn(x)

1− zx
µ(x)dx. (6)
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Thus, the Taylor expansion at z = 0 of the rational fraction W̃n−1(z)/ Ṽn(z) coincides with

that of f(z) up to zn−1 at z = 0. By analogy with Padé approximant, the quotient W̃n−1(z)

Ṽn(z)

is denoted (n− 1/n)f (z) and is called a Padé type approximant to f(z). Note that if Vn is
orthogonal with respect to µ (ie

∫∞
0
xkVn(x)µ(x)dx = 0 for 0 ≤ k ≤ n− 1), we can replace

in (6) Vn and Ṽn by their square respectively, and zn by z2n so that the error is O(z2n).
More generally, we de�ne

(n+ p− 1/n)f := c0 + c1z + c2z
2 + · · ·+ cp−1z

p−1 + zp(n− 1/n)fp

where p ∈ N and fp(z) := cp+ cp+1z+ · · · . This means that the weight µ is thus multiplied
by xp. The error f(z)− (n+ p− 1/n)f (z) then satis�es

f(z)− (n+ p− 1/n)f (z) =
zp+n

Ṽn(z−1)

∫ ∞
0

Vn(x)

1− xz
xpµ(x)dx. (7)

3. Auxiliary results

In this section, we collect and proove various results that will be used in the proof of
Theorem 1.

3.1. Proof of the asymptotic expansion (4). If ` = 0, then S(2m+2, 1) = −(2m+1)!.
Hence (4) is a generalization of (1). Israilov proved in [7] that, when n→ +∞,

γ` =
n∑
k=1

ln`(k)

k
− ln`+1(n)

`+ 1
− ln`(n)

2n

−
N−1∑
k=1

B2k

(2k)!

(
log`(x)

x

)(2k−1)

|x=n

− θ ·B2N

(2N)!

(
log`(x)

x

)(2N−1)

|x=n

,

where 0 < θ < 1. Now, we have(
log`(x)

x

)(p)

=
`!

xp+1

`+1∑
j=1

S(p+ 1, j)

(`− j + 1)!
log`−j+1(x).

After rearrangment, we then obtain the asymptotic expansion (4) as n→ +∞.

3.2. An integral representation. Using formula (3) and its asymptotic expansion (4),
we are now in position to obtain an integral representation for the coe�cients in (4).

Proposition 1. For every integers m ≥ 0, k ≥ 0, we have

(−1)m+1B2m+2

(2m+ 2)!
S(2m+ 2, k + 1) =

∫ ∞
0

x2m wk(x)dx, (8)
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where the weight function wk is de�ned by

wk(x) :=

ix

π(k + 1)!

∫ ∞
x

((
log
(y
x
−1
)

+ iπ
)k+1

−
(

log
(y
x
−1
)
− iπ

)k+1
)
d

dy
·
( 1

e2πy − 1

)
dy.

Remarks. An equivalent expression is given by

wk(x) =
−2x

(k + 1)!

k/2∑
q=0

(
k + 1

2q + 1

)
(−π2)q

∫ ∞
x

logk−2q
(y
x
− 1
)
· d
dy

( 1

e2πy − 1

)
dy.

For m = 0 and k ≥ 2,
∫∞

0
wk(x)dx = 0 because S(2, k + 1) = 0. Therefore, none of the

weight functions wk can have a constant sign on [0,+∞) when k ≥ 2.

We �rst need a lemma

Lemma 1. For every real numbers a > 0, t ≥ 0 and every integer k ≥ 0, we have∫ t

0

∣∣∣ x

a2 + x2

(
log a(t/x− 1) + iπ

)k∣∣∣dx ≤ D · Ck(k + 1)!t2

for some constants C,D > 0 that depend on a but neither on k nor t.

Proof. We have

I : =

∫ t

0

∣∣∣ x

a2 + x2

(
log a(t/x− 1) + iπ

)k∣∣∣dx
≤ 1

a2

k∑
n=0

(
k

n

)
(| log(a)|+ π)k−n

∫ t

0

x| log(t/x− 1)|ndx

≤ t

a2
2k(| log(a)|+ π)k

k∑
n=0

∫ t

0

| log(t/x− 1)|ndx.

Now,∫ t

0

| log(t/x− 1)|ndx u=t/x−1
= t

∫ ∞
0

| log(u)|n

(1 + u)2
du

= 2t

∫ 1

0

logn(1/u)

(1 + u)2
du ≤ 2t

∫ 1

0

logn(1/u) = 2tn!.

Therefore,

0 ≤ I ≤ 2k+1(| log(a)|+ π)k

a2
t2

k∑
n=0

n! ≤ D · Ck(k + 1)!t2

with D := 2/a2 and C := 2(| log(a)|+ π). �
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Proof of Proposition 1. In [8], the �rst named author proved the following formula for the
Hurwitz zeta function: for any complex numbers s, a such that <(s) > 0,<(a) > 0, and
any positive integer m > <(s)− 1, we have

ζ(s, a) =
1

as−1

(
1

s− 1
+

1

2a
+

∫ ∞
0

1

a2 + x2
νs(x)dx

)
(9)

where

νs(x) =
2(−1)mxs

Γ(s)Γ(m+ 1− s)

∫ ∞
x

(t− x)m−s · d
m

dtm

(
1

e2πt − 1

)
dt.

If s is such that <(s) < 2 (in particular if s is �close to� 1), we can take m = 1 and thus

a1−sνs(x) =
−2xsa1−s sin(πs)

(1− s)π

∫ ∞
x

(t− x)1−s · d
dt

( 1

e2πt − 1

)
dt. (10)

For ease of reading, we set ϕ(t) := d
dt

( 1
e2πt−1

) = − 2πe2πt

(e2πt−1)2 in the rest of this section.

We now assume that a > 0, t, x ∈ R and that t ≥ x. The Laurent expansion of
−2xsa1−s sin(πs)

(1−s)π (t− x)1−s at s = 1 is

−2xsa1−s sin(πs)

(1− s)π
(t− x)1−s =

−2x

π
=
∞∑
k=1

(1− s)k−1

k!

(
ln a(t/x− 1) + iπ

)k
. (11)

The series starts at k = 1 and not k = 0 because the left-hand side is holomorphic at s = 1;
the series converges for all s ∈ C. By Lemma 1, we deduce that, for s close enough to 1,
the series

∞∑
k=1

|s− 1|k−1

k!

∫ ∞
0

∣∣ϕ(t)
∣∣ ∫ t

0

∣∣∣ x

a2 + x2

(
log(a(t/x− 1) + iπ)k

)∣∣∣dxdt
converges. Therefore, for s close to 1 (which depends on the value of a), we can exchange
the various integrals and series when we use (9) and (10) in conjonction with (11), and

this provides the Laurent series expansion of ζ(s, a) at s = 1. Since for ` ≥ 0, (−1)` γ`(a)
`!

is the coe�cient of (s − 1)` in the Laurent series expansion of ζ(s, a) at s = 1, unicity of
such expansion yields, for all ` ≥ 0 and all a > 0,

γ`(a) =
log`(a)

2a
− log`+1(a)

`+ 1

+
2(−1)`

π(`+ 1)
=
∫ ∞

0

x

a2 + x2

∫ ∞
x

(
log a(t/x− 1) + iπ

)`+1
ϕ(t)dtdx. (12)

We shall now compute the asymptotic expansion of the right-hand side of the previous
identity for γ`(a) when a→ +∞ (recall that a ∈ (0,+∞)). We �rst observe that for every
integers k, p ≥ 0, the function

(t, x) 7→ x2k+1
∣∣ lnp(t/x− 1)ϕ(t)

∣∣1{0≤x≤t}(t, x)
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is integrable on [0,+∞)× [0,+∞). Therefore, the following computations are licit: for any
integer k ≥ 0, we have∫ ∞

0

x

a2 + x2

∫ ∞
x

(
log a(t/x− 1) + iπ

)`+1
ϕ(t)dtdx

=
k−1∑
m=0

(−1)m

a2m+2

∫ ∞
0

x2m+1

∫ ∞
x

(
log a(t/x− 1) + iπ

)`+1
ϕ(t)dtdx

+

∫ ∞
0

(−1)kx2k+1

a2k(a2 + x2)

∫ ∞
x

(
log a(t/x− 1) + iπ

)`+1
ϕ(t)dtdx

=
k−1∑
m=0

(−1)m

a2m+2

∫ ∞
0

x2m+1

∫ ∞
x

(
log a(t/x− 1) + iπ

)`+1
ϕ(t)dtdx+O(a−2k−2),

where in the last line a→ +∞ and the implicit constant in O depends on k.
Using (12) with a = n, the generalized asymptotic expansion of γ`(n) as n → +∞ is

thus

γ`(n) ∼ ln`(n)

2n
− ln`+1(n)

`+ 1

+
2

π(`+ 1)

∞∑
m=0

(−1)m

n2m+2

∫ ∞
0

x2m+1

∫ ∞
x

=
(
(lnn(t/x− 1) + iπ)`+1

)
ϕ(t)dtdx.

Comparing this expression and Eq. (4) (stated in the introduction), unicity of such an
asymptotic expansion implies that for any integers k,m ≥ 0, we have

(−1)m+1 B2m+2

(2m+ 2)!
S(2m+ 2, k + 1)

=
−2

π(k + 1)!

∫ ∞
0

x2m+1

∫ ∞
x

=
(
(ln(t/x− 1) + iπ)k+1

)
ϕ(t)dtdx.

This completes the proof of Proposition 1. �

3.3. Bounds for the weights wk(x). To choose the generating polynomial of the Padé
type approximant, we shall �rst �nd an upper bound of the weight wk in term of a weight
function of which we know explicitely the orthogonal polynomials.
The goal of this section is to prove the following

Proposition 2. For any integers k, p such that and 0 ≤ k ≤ 2p, and for any x ≥ 0, the
weight function

wk(x) :=
−2x

(k + 1)!

k/2∑
q=0

(
k + 1

2q + 1

)
(−π2)q

∫ ∞
x

lnk−2q(y/x− 1)
d

dy

( 1

e2πy − 1

)
dy

satis�es

x2p+1 |wk(x)| ≤ 8 sinh(π)G (p+ 4, 1, x) ,
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where

G(α, β, x) := |Γ(α + ix)Γ(β + ix)|2 .

We need the following lemma.

Lemma 2. For every x ≥ 0 and every integer p ≥ 0,

e−2πx x2

(1− e−2πx)2

(
1 + x2

)p+1/2 ≤ G(p+ 4, 1, x).

Proof. First, let us remark that for α ∈ R, G(α+ 1, 1, x) = (α2 + x2)G(α, 1, x). In [10], we
proved that for every x ≥ 0 and every integer m ≥ 0, we have e−2πx ≤ G (1, 1, x) and(

x

1− e−2πx

)m+1

G(2, 1, x) ≤ G

(
m+ 5

2
, 1, x

)
.

Hence,

x2 (1 + x2)
p+1/2

e−2πx

(1− e−2πx)2 ≤ x2

(1− e−2πx)2

(
1 + x2

)p+1/2
G(2, 1, x)

≤
(
x2 + 1

)p+1/2
G(3, 1, x) ≤ G(p+ 4, 1, x).

�

Proof of Proposition 2. Using Proposition 1, we see that

|wk(x)| ≤ 2x

(k + 1)!

k/2∑
q=0

(
k + 1

2q + 1

)
π2q

∫ ∞
x

∣∣lnk−2q(y/x− 1)
∣∣ 2πe2πy

(e2πy − 1)2dy.

Note that
(
k+1
2q+1

)
= 0 if q = (k + 1)/2, hence the sum stops at q = k/2 (at most). We

split the interval [x,∞[ into two intervals [x, 2x] and [2x,+∞), on which the function
y 7→ ln(y/x− 1) has a constant sign.

Let us �rst consider the integral
∫ 2x

x

∣∣lnk−2q(y/x− 1)
∣∣ 2πe2πy

(e2πy−1)2dy:∫ 2x

x

| lnk−2q(y/x− 1)| 2πe2πy

(e2πy − 1)2dy ≤ (−1)k−2q 2πe2πx

(e2πx − 1)2

∫ 2x

x

lnk−2q(y/x− 1)dy

= (−1)k−2q 2πe2πxx

(e2πx − 1)2

∫ 1

0

lnk−2q(u)du

=
2πe2πxx

(e2πx − 1)2 (k − 2q)!.



10

The second integral is treated as follows:∫ ∞
2x

2π
∣∣lnk−2q(y/x− 1)

∣∣
(eπy − e−πy)2 dy ≤ 2π

(1− e−4πx)2

∫ ∞
2x

lnk−2q(y/x− 1)e−2πydy

=
2π(k − 2q)

(1− e−4πx)2

∫ ∞
2x

1

y − x
lnk−2q−1(y/x− 1)

e−2πy

2π
dy

≤ 2π(k − 2q)

(1− e−4πx)2

1

x

∫ ∞
2x

lnk−2q−1(y/x− 1)
e−2πy

2π
dy

≤ 2π(k − 2q)!

(1− e−4πx)2

1

xk−2q

∫ ∞
2x

e−2πy

(2π)k−2q
dy

=
(k − 2q)!

(1− e−4πx)2

e−4πx

(2πx)k−2q

(after k − 2q integrations by parts).
Therefore

|wk(x)| ≤ 2x

k/2∑
q=0

π2p

(2q + 1)!

(
2πxe2πx

(e2πx − 1)2 +
1

(1− e−4πx)2

e−4πx

(2πx)k−2p

)

= 2x

k/2∑
q=0

π2qe−2πx

(2q + 1)!

(
2πx

(1− e−2πx)2 +
1

(1− e−4πx)2

1

(2πx)k−2q

)

≤ 2x

k/2∑
q=0

π2qe−2πx

(2q + 1)!

2πx

(1− e−2πx)2

(
1 + (2πx)−k+2q−1

)
.

It follows that

x2p+1|wk(x)| ≤ 4x2

k/2∑
q=0

π2q+1e−2πx

(2q + 1)!

(
x2p+1 + x2p−k+2q

)
(1− e−2πx)2

≤ 8x2(1 + x2)(2p+1)/2e−2πx

(1− e−2πx)2

k/2∑
q=0

π2q+1

(2q + 1)!
(because x ≤ (1 + x2)1/2)

≤ e−2πx8x2(1 + x2)(2p+1)/2

(1− e−2πx)2

k/2∑
q=0

π2q+1

(2q + 1)!

≤ 8G (p+ 4, 1, x)
∞∑
q=0

π2q+1

(2q + 1)!
(by Lemma 2)

= 8 sinh(π)G(p+ 4, 1, x).

This completes the proof of Proposition 2. �
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4. A review of Wilson's polynomials properties

To proceed further, we make a crucial observation: the function G(α, β, x) considered
in Proposition 2 is Wilson's weight on (0,+∞), for which the orthogonal polynomials are
explicitly known; see [2, 11]. We review their properties in this section.
Let α, β > 0. Wilson's polynomials are de�ned by

Pn(α, β, x) := in3F2

[
−n, n+ 2α + 2β − 1, β − ix

α + β, 2β
; 1

]
∈ R[x]

and they have the parity of n. The leading coe�cient of Pn(α, β, x) is

(−1)n
(n+ 2α + 2β − 1)n

(α + β)n (2β)n
.

They satisfy the orthogonality relations∫ +∞

−∞
Pn(α, β, x)Pm(α, β, x)G(α, β, x)dx = 0, n 6= m,

and ∫ +∞

−∞
P 2
n(α, β, x)G(α, β, x)dx =

(1)n(2α)n(α + β − 1
2
)n

(2β)n(2α + 2β − 1)n(α + β + 1
2
)n
A(α, β),

where

A(α, β) :=

∫ +∞

−∞
G(α, β, x)dx =

Γ(α)Γ
(
α + 1

2

)
Γ(β)Γ

(
β + 1

2

)
Γ(α + β)Γ

(
1
2

)
Γ
(
α + β + 1

2

) .

Consider now the weight function γ(α, β, x) := 1√
x
G(α, β,

√
x) ∈ L1(R+). The sequence

of monic orthogonal polynomials (Tk(α, β, x))k on [0,∞) with respect to γ(α, β, x) is given
by

Tn(α, β, x) =
(α + β)2n (2β)2n

(2n+ 2α + 2β − 1)2n

P2n(α, β,
√
x).

In particular, for all integer n ≥ 0,∫ +∞

0

T 2
n(α, β, x)γ(α, β, x)dx =

π2(4n+ 2α + 2β − 1)(2n)!Γ(2n+ 2α)Γ(2n+ 2β)Γ(2n+ 2α + 2β − 1)

28n+4α+4β−3Γ
(
2n+ α + β + 1

2

)2 . (13)

If β = 1, then

Tn(α, 1, x) =
(−1)n(2n)!(α)2n+1

(2n+ 2α)2n+1

2n∑
j=0

(
2n+ 1

j + 1

)(
2n+ 2α + j

j + 1

)(
i
√
x− 1

j

)
/

(
α + j

j + 1

)
(14)
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and, after simpli�cation of (13), we obtain∫ +∞

0

T 2
n(α, 1, x)γ(α, 1, x)dx =

2π(2n+ 2α)

(2n+ 1)(4n+ 2α + 1)

Γ(2n+ α + 1)2(
4n+2α
2n+1

)2 (15)

and ∫ +∞

0

γ(α, 1, x)dx =
πα

(2α + 1)
Γ(α)2. (16)

5. Proof of Theorem 1

We de�ne

Ψk(z) =

∫ ∞
0

wk(x)

1− zx2
dx =

∫ ∞
0

1

1− zx
wk(
√
x)

2
√
x

dx, z ∈ C \ [0,+∞).

Proposition 1 implies that as z → 0 in any angular open sector that does not contain
[0,+∞), the asymptotic expansion of Ψk(z) is given by Φk(z). (See [9, �2] for more details
in a very similar sitution).
From the results proved in �3, it is immediate that Eqs. (2) and (12) (with a = n) imply

that for every integer n ≥ 1,

γ` =
n∑
j=1

ln`(j)

j
− ln`(n)

2n
− ln`+1(n)

`+ 1
+
`!

n2

∑̀
k=0

ln`−k(n)

(`− k)!
Ψk

(
− 1

n2

)
. (17)

5.1. A bound for the Padé type approximants of Φk. In this section, we shall prove
the following bound, where we now make our choice for the generating polynomial of the
Padé type approximants: we take Vn(x) = Tn(α, 1, x), which we shall simplify as Tn(α, x)
in the sequel.

Proposition 3. Let z ∈ C such that <(z) < 0, and s > 0. For any integers p ≥ `/2 and

k ≥ 0, set εn,p,k(z) := Ψk(z)− (n+ p/n)Φk(z). Then,

|εn,p,k(z)| ≤

εn,p(z) := C
|z|p+1

|Tn(α, z−1)|
Γ(2n+ α + 1)(

4n+2α
2n+1

) (
(2n+ 2α)

(2n+ 1)(4n+ 2α + 1)

)1/2

, (18)

where α := p+ 4 and C := 4π sinh(π)Γ(α + 1)
(

2α
2α+1

)1/2
.

Proof. The di�erence between the function Ψk and its Padé type approximant is

Ψk(z)− (n+ p/n)Φk(z) =
zp+1

Tn(α, z−1)

∫ ∞
0

xp+1wk(
√
x)

2
√
x

Tn(α, 1, x)

1− zx
dx.
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(See (7) in �2.) Hence, using Proposition 2, the Cauchy-Schwartz inequality, (15) and (16),
we have that

|εn,p,k(z)|

≤
∣∣∣∣ zp+1

Tn(α, 1, z−1)

∣∣∣∣ ∫ ∞
0

|Tn(α, 1, x)|
|1− zx|

xp+1|wk(
√
x)| 1

2
√
x
dx

≤
∣∣∣∣ zp+1

Tn(α, z−1)

∣∣∣∣ ∫ ∞
0

|Tn(α, x)|xp+1|wk(
√
x)| 1

2
√
x
dx

≤ 4 sinhπ

∣∣∣∣ zp+1

Tn(α, z−1)

∣∣∣∣ ∫ ∞
0

|Tn(α, x)|γ(α, 1, x)dx

≤ 4 sinhπ

∣∣∣∣ zp+1

Tn(α, z−1)

∣∣∣∣ (∫ ∞
0

|Tn(α, x)|2γ(α, 1, x)dx

)1/2(∫ ∞
0

γ(α, 1, x)dx

)1/2

≤ 4π sinhπ

∣∣∣∣ zp+1

Tn(α, z−1)

∣∣∣∣ Γ(2n+ α + 1)Γ(α + 1)(
4n+2α
2n+1

) (
2α(2n+ 2α)

(2n+ 1)(4n+ 2α + 1)(2α + 1)

)1/2

.

This completes the proof of Proposition 2. �

5.2. Completion of the proof of Theorem 1. In Eq. (17), we want to replace Ψk(−1/n2)
by the Padé type approximants (rn + p/rn)Φk(−1/n2) (for p ≥ `/2) considered in �5.1.
With the notations used in that section, we have

γ` =
n∑
j=1

ln`(j)

j
− ln`(n)

2n
− ln`+1(n)

`+ 1
+
`!

n2

∑̀
k=0

ln`−k(n)

(`− k)!
(rn+ p/rn)Φk(−1/n2)

+
`!

n2

∑̀
k=0

ln`−k(n)

(`− k)!
εrn,p,k(−1/n2)

=
n∑
j=1

ln`(j)

j
− ln`(n)

2n
− ln`+1(n)

`+ 1
+
`!

n2

∑̀
k=0

ln`−k(n)

(`− k)!
(rn+ p/rn)Φk(−1/n2) + δrn,p,`,

where

δrn,p,` =
`!

n2

∑̀
k=0

ln`−k(n)

(`− k)!
εrn,p,k(−1/n2).

Then by Proposition 2, it follows that

|δrn,p,`| ≤
`!

n2
εrn,p(−1/n2)

∑̀
k=0

ln`−k(n)

(`− k)!
≤ `!

n
εrn,p(−1/n2).
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Now, by (18),

εrn,p
(
−1/n2

)
= 4π sinhπ

∣∣∣∣ (−1/n2)p+1

Trn(α,−n2)

∣∣∣∣ Γ(2rn+α+1)Γ(α+1)(
4rn+2α
2rn+1

) (
2α(2rn+ 2α)

(2rn+1)(4rn+2α+1)(2α+1)

)1/2

.

(19)

To compute lim supn |δrn,p,`|
1/n as n → +∞, the previous bound shows it is enough to

compute lim supn |εrn,p (−1/n2)|1/n. For this, let us consider

Trn(α,−n2) :=
(−1)rn(2rn+ 2α)2rn+1

(2rn)!(α)2rn+1

Trn(α,−n2)

=
2rn∑
j=0

(
2rn+ 1

j + 1

)(
2rn+ 2α + j

j + 1

)(
n− 1

j

)
/

(
α + j

j + 1

)
. (20)

All the terms of this sum are positive and are zero when j ≥ min(n, 2rn + 1) because of
the vanishing of the binomial coe�cients

(
2rn+1
j+1

)
and

(
n−1
j

)
. Applying Stirling's formula

to the summand of Trn(α,−n2), the discrete Laplace method (see [3, proof of Lemme 3])
implies that

lim
n→∞

Trn(α,−n2)1/n = max
0≤t≤min(1,2r)

(2r + t)2r+t

t3t(2r − t)2r−t(1− t)1−t

=
(2r + µr)

2r

(2r − µr)2r(1− µr)
,

where µr = 2r
r+
√

1+r2 < min(1, 2r) is a root of (1−t)(4r2−t2) = t3. After some simpli�cations

of the term (2rn+2α)2rn+1

(2rn)!(α)2rn+1
(in (20)) with the term Γ(2rn + α + 1)Γ(α + 1)/

(
4rn+2α
2rn+1

)
in (19),

it follows that

lim sup
n→∞,rn∈N

|δrn,p,`|1/n ≤
(2r − µr)2r

(2r + µr)2r
(1− µr) < 1.

This completes the proof of Theorem 1.

For example, if r = 1, for any integer ` and p ≥ `/2, lim supn→∞ |δn,p,`|1/n ≤ (
√

2−1)4 ≈
0.02943. For r = 2, lim supn→∞ |δ2n,p,`|1/n ≤ 1

16
(
√

5− 1)4(
√

5− 2)2 ≈ 0.00813.

6. Expression of the Padé type approximants in Theorem 1

The purpose of this section is to make completely explicit the Padé type approximants
for the functions Φk, 0 ≤ k ≤ ` involved in Theorem 1.
For the sake of simplicity, we de�ne a linear functional Ω(k) acting on the space of

polynomials by
〈
Ω(k), xm

〉
:= Ω

(k)
m+p+1, where p ≥ −1 is a �xed integer and the moments
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(Ω
(k)
m )m∈N are de�ned by

Ω(k)
m :=

(−1)m+1B2m+2

(2m+ 2)!
S(2m+ 2, k + 1) =

∫ ∞
0

x2m wk(x)dx.

We recall that we have chosen (up to a multiplicative factor)

Trn(α, x) :=
2rn∑
j=0

(
2rn+ 1

j + 1

)(
2rn+ 2α + j

j + 1

)(
±i
√
x− 1

j

)
/

(
α + j

j + 1

)
as the generating polynomial of all the denominator of the Padé type approximants (rn+
p/rn)Φk . The numerator of (rn + p/rn)Φk depends on k and requires the computation of
the associated polynomial of degree rn− 1

W
(k)
rn−1(z) =

〈
Ω(k),

Trn(α, x)− Trn(α, z)

x− z

〉
.

By linearity, it is enough to compute Ω(k) applied to the polynomial(±i√x−1
j

)
−
(±i√z−1

j

)
x− z

.

For this purpose, it is necessary to expand it on the canonical basis. Since we can choose
either + or − in the de�nition of Trn(α, x), the latter can be viewed as the mean of the
expression with a + and of the expression with a −. Hence, it is convenient to �rst compute
the associated of the following polynomial(

i
√
x−1
j

)
+
(−i√x−1

j

)
2

.

We have (
i
√
x−1
j

)
+
(−i√x−1

j

)
2

=
1

2j!

j∑
q=0

S(j + 1, q + 1)((i
√
x)q + (−i

√
x)q)

=
1

j!

j/2∑
q=0

S(j + 1, 2q + 1)xq(−1)q

Hence,〈
Ω(k),

(
i
√
x−1
j

)
+
(−i√x−1

j

)
−
(
i
√
z−1
j

)
−
(−i√z−1

j

)
2(x− z)

〉

=
1

j!

j/2∑
q=0

S(j + 1, 2q + 1)(−1)q
q−1∑
s=0

zq−1−sΩ
(k)
s+p+1.
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Therefore, the associated polynomial of Trn(α, x) with respect to Ω(k) is

W
(k)
rn−1(z) :=

〈
Ω(k),

Trn(α, x)− Trn(α, z)

x− z

〉
=

2rn∑
j=0

(
2rn+1
j+1

)(
2rn+2α+j

j+1

)(
α+j
j+1

) 〈
Ω(k),

(
i
√
x−1
j

)
+
(−i√x−1

j

)
−
(
i
√
z−1
j

)
−
(−i√z−1

j

)
2(x− z)

〉

=
2rn∑
j=0

(
2rn+1
j+1

)(
2rn+2α+j

j+1

)(
α+j
j+1

) 1

j!

j/2∑
q=0

S(j + 1, 2q + 1) (−1)q
q−1∑
s=0

zq−1−sΩ
(k)
s+p+1.

The Padé type approximant (rn+ p/rn)Φk(z) is then

p∑
j=0

Ω
(k)
j zj +

zpW
(k)
rn−1(z−1)

Trn(α, 1, z−1)
.

Hence, we have

γ` =
n∑
j=1

ln`(j)

j
− ln`(n)

2n
− ln`+1(n)

`+ 1
+
`!

n2

∑̀
k=0

ln`−k(n)

(`− k)!
(rn+ p/rn)Φk(−1/n2)

where

(rn+ p/rn)Φk(−1/n2) =

(
p∑
j=0

Ω
(k)
j zj +

zpW
(k)
rn−1(z−1)

Trn(α, z−1)

)
|z=−1/n2

=

p∑
j=0

Ω
(k)
j

(
−1

n2

)j
+

(
− 1

n2

)p
Nk

D

and

Nk :=
2rn∑
j=0

(
2rn+1
j+1

)(
2rn+2α+j

j+1

)
j!
(
α+j
j+1

) j/2∑
q=0

S(j + 1, 2q + 1)

q−1∑
s=0

(−1)s+1n2q−2−2sΩ
(k)
s+p+1

D :=
2rn∑
j=0

(
2rn+ 1

j + 1

)(
2rn+ 2α + j

j + 1

)(
n− 1

j

)
/

(
α + j

j + 1

)
,

and α := p+ 4

7. The particular cases ` = 0 and ` = 1

The beginning of the paper deals with approximations of Stieltjes' constants in a general
way, i.e. by adding to the partial sum of order n de�ning γ` the sum of a Padé type
approximant to the asymptotic expansion of the remainder as a function of 1/n. The
reason for this approach is that the weight functions underlying this expansion do not have
a constant sign on [0,+∞). However for ` = 0 and ` = 1, as we shall show, the weights w0
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and w1 have a constant sign. As a consequence, we can use ordinary Padé approximants
instead of Padé type approximants.

The case ` = 0 has already been fully treated in [9]. In this case, for every x > 0,

w0(x) = −2x

∫ ∞
x

d

dy

(
1

e2πy − 1

)
dy =

2x

e2πx − 1
≥ 0.

The case ` = 1 is more complicated. We have, for every x > 0,

w1(x) = 4πx

∫ ∞
x

ln(y/x− 1)
e2πy

(e2πy − 1)2dy

= 4πx2

∫ 1

0

ln(1/v − 1)
e2πx/v

(e2πx/v − 1)
2

dv

v2
(v = x/y)

= 4πx2

(∫ 1

0

ln(1− v)
e2πx/v

(e2πx/v − 1)
2

dv

v2
−
∫ 1

0

ln(v)
e2πx/v

(e2πx/v − 1)
2

dv

v2

)

= 4πx2

(∫ 1

0

ln(1− v)
e2πx/v

(e2πx/v − 1)
2

dv

v2
−
∫ 1

0

ln(1− v)
e2πx/(1−v)

(e2πx/(1−v) − 1)
2

dv

(1− v)2

)

= 4πx2

∫ 1

0

ln(1− v)Ψ(v)dv

where

Ψ(v) :=
e2πx/v

(e2πx/v − 1)
2

1

v2
− e2πx/(1−v)

(e2πx/(1−v) − 1)
2

1

(1− v)2
.

Because y 7→ 1
e2πy−1

is completely monotonic on [0,+∞), the function Ψ(v) is increasing on
[0, 1] for any �xed x. Moreover it is an odd function around v = 1/2 and Ψ(1/2) = 0. Hence,

Ψ is negative on [0, 1/2], positive on [1/2, 1] and
∫ 1

0
Ψ(v)dv = 0. Now, on [0, 1/2], ln(1−v) ≥

− ln(2) and Ψ(v) ≤ 0 so that ln(1 − v)Ψ(v) ≤ − ln(2)Ψ(v), while on [1/2, 1], ln(1 − v) ≤
− ln(2) and Ψ(v) ≥ 0 so that ln(1− v)Ψ(v) ≤ − ln(2)Ψ(v). Writing

w1(x) = 4πx2
(∫ 1/2

0

ln(1− v)Ψ(v)dv +

∫ 1

1/2

ln(1− v)Ψ(v)dv
)
,

we deduce that

w1(x) ≤ −4πx2 ln(2)

∫ 1

0

Ψ(v)dv = 0,

and thus the weight function w1(x) has a constant sign on [0,+∞).

The approximation of γ1 in terms of Padé approximants is thus

n∑
j=1

ln(j)

j
− ln(n)

2n
− ln2(n)

2
− [rn+ p/rn]Φ1

(−1/n2)− ln(n) [rn+ p/rn]Φ0
(−1/n2)
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for any integers n, p ≥ 1 and any r ∈ Q≥0 such that rn ∈ N. We display the error without
any calculations. We have

ε̃(0)
rn,p(z) := Ψ0(z)− [rn+ p/rn]Φ0

(z) =
zp+1

(P
(0)
rn (α, z−1))2

∫ ∞
0

(P
(0)
rn (α, x))2

1− zx
xp+1w0(

√
x)

2
√
x

dx,

ε̃(1)
rn,p(z) := Ψ1(z)− [rn+ p/rn]Φ1

(z) =
zp+1

(P
(1)
rn (α, z−1))2

∫ ∞
0

(P
(1)
rn (α, x))2

1− zx
xp+1w1(

√
x)

2
√
x

dx,

where P
(0)
rn (α, z−1) and P

(1)
rn (α, z−1) are orthogonal polynomials with respect to the weight

function xp+1w1(
√
x) 1

2
√
x
. Explicit expressions of these polynomials are not known, but it

is known that their roots lie on [0,∞). Similar computations than those done in [9] then
show that for r < 2e and m ∈ {0, 1}, we have

lim sup
n→∞,rn∈N

∣∣ε̃(m)
rn,p(−1/n2)

∣∣1/n ≤ ( r
2e

)4r

< 1.

This proves the following

Theorem 2. For any �xed r ∈ Q≥0 such that r < 2e, we have

lim sup
n→∞,rn∈N

∣∣∣γ1 −
( n∑
j=1

ln(j)

j
− ln(n)

2n
− ln2(n)

2

− [rn+ p/rn]Φ1

(
− 1/n2

)
− ln(n)[rn+ p/rn]Φ0

(
− 1/n2

))∣∣∣1/n ≤ ( r
2e

)4r

.

8. An application to the Riemann zeta function

We �rst recall the previous results established by the authors. In [8], the �rst named
author proved that for any complex number s, <(s) > −1 and any positive integer m,
m > <(s)− 1, then

ζ(s) =
1

s− 1
+

1

2
+

∫ ∞
0

1

1 + x2
νs(x)dx

where the weight function νs(x) is de�ned by:

νs(x) :=
2(−1)mxs

Γ(s)Γ(m+ 1− s)

∫ ∞
x

(t− x)m−s
dm

dtm

(
1

e2πt − 1

)
dt.

As a consequence, he obtained an approximation of ζ(s) as follows. Let us de�ne the formal
power series

Ψ̃s(t) :=
∞∑
k=0

Bk

k!
(s)k−1(−t)k,

where (s)j is Pochhammer's symbol for j ≥ 0 and (s)−1 := 1
s−1

. Then, using Carleman
criteria, for all integer p ≥ 1 and s > 0, s 6= 1, he proved that

ζ(s) =
n∑
k=1

1

ks
+ (n+ 1)1−s lim

m→∞
[m+ p/m]Ψ̃(1/(n+ 1)).
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Note that n is �xed. The proof is based on the non-negativity of νs(x) on [0,+∞). More-
over, in [10], the two authors proved the following result: let r ∈ Q be such that 0 < r < 2e
and s > 0, s 6= 1 and

Θs(t) :=
∑
k≥0

B2k+2

(2k + 2)!
(s)2k+1(−t)k = t−2

(
−1

s− 1
+
t

2
+ Ψ̃s(t)

)
.

Then, for every integer n ≥ 1 such that rn is an integer, we have

ζ(s) =
n∑
k=1

1

ks
+

1

(s− 1)ns−1
− 1

2ns
+

1

ns+1
[rn/rn]

Θs

(
− 1

n2

)
+σr,s,n, (21)

where

lim sup
n→+∞

|σr,s,n|1/n ≤
( r

2e

)4r

.

If s < 0, s /∈ Z≤0, the degree of the numerator of the Padé must be increased, i.e. rn is
replaced by rn+ p where p = b−s/2c+ 1. On the other hand, if s is not a real number, we
could not prove that (21) still holds because νs(x) is no longer non-negative on its support.
Consequently, the denominator of the Padé does not have its roots on [0,+∞), in which
case our method is inoperant.

However, we can also use a similar approach as for Stieltjes' constants: we replace
the Padé approximant in (21) by a Padé type approximant with a Wilson polynomial as
generating polynomial. The following result is then obtained, the proof of which is not
given here because it is very similar to that of Theorem 1.
We consider again the Wilson's polynomial Trn(α, 1, x) as the generating polynomial for

the Padé type approximants (rn+ p/rn)Θs , with α := (m+ 5)/2 + p where m,n, p, r, s are
speci�ed below.

Theorem 3. For any integers n, p ≥ 1, any r ∈ Q≥0 such that rn ∈ N, for any complex

number s such that <(s) > 0, s 6= 1 and any integer m > <(s)− 1, we have

ζ(s) =
n∑
k=1

1

ks
+

1

(s− 1)ns−1
− 1

2ns
+

1

ns+1
(rn+ p/rn)Θs(−1/n2) + δrn,p (22)

where

lim sup
n→∞,rn∈N

|δrn,p|1/n ≤
(2r − µr)2r

(2r + µr)2r
(1− µr) < 1

with µr = 2r
r+
√

1+r2 .

More precisely, we have

(rn+ p/rn)Θs(z) =

p∑
j=0

cjz
j + zp

N

D
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where m > <(s)− 1, α = (m+ 5)/2 + p, ck := (−1)k B2k+2

(2k+2)!
(s)2k+1,

N :=
2rn∑
j=0

(
2rn+1
j+1

)(
2rn+2α+j

j+1

)
j!
(
α+j
j+1

) j/2∑
q=0

q−1∑
t=0

(−1)qS(j + 1, 2q + 1)ct+p+1

(
− 1

n2

)t+1−q
,

D :=
2rn∑
j=0

(
2rn+ 1

j + 1

)(
2rn+ 2α + j

j + 1

)(
n− 1

j

)
/

(
α + j

j + 1

)
.

Remark. If s ∈ C, s /∈ Z≤0, in Theorem 3 the degree of the Padé type approximant must
be increased: p must be greater than b−<(s/2)c+ 1,m = 0 and α = 5/2. Hence, for every
complex number s 6= 1, not in Z−, the convergence of formula (3) holds, with the same
speed which is independent of p.
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