DISTRIBUTION OF ELEMENTS OF A FLOOR FUNCTION SET IN ARITHMETICAL PROGRESSION
Résumé
Let $[t]$ be the integral part of the real number $t$.
The aim of this short note is to study the distribution of elements of the set
$\mathcal{S}(x) := \{[\frac{x}{n}] : 1\le n\le x\}$
in the arithmetical progression $\{a+dq\}_{d\ge 0}$.
Our result is as follows: the asymptotic formula
\begin{equation}\label{YW:result}
S(x; q, a)
:= \sum_{\substack{m\in \mathcal{S}(x)\\ m\equiv a ({\rm mod}\,q)}} 1
= \frac{2\sqrt{x}}{q} + O((x/q)^{1/3}\log x)
\end{equation}
holds uniformly for $x\ge 3$, $1\le q\le x^{1/4}/(\log x)^{3/2}$ and $1\le a\le q$,
where the implied constant is absolute.
The special case of \eqref{YW:result} with fixed $q$ and $a=q$ confirms a recent numeric test of Heyman.
Domaines
Théorie des nombres [math.NT]Origine | Fichiers produits par l'(les) auteur(s) |
---|