DISTRIBUTION OF ELEMENTS OF A FLOOR FUNCTION SET IN ARITHMETICAL PROGRESSION - Archive ouverte HAL
Article Dans Une Revue Bulletin of the Australian Mathematical Society Année : 2022

DISTRIBUTION OF ELEMENTS OF A FLOOR FUNCTION SET IN ARITHMETICAL PROGRESSION

Résumé

Let $[t]$ be the integral part of the real number $t$. The aim of this short note is to study the distribution of elements of the set $\mathcal{S}(x) := \{[\frac{x}{n}] : 1\le n\le x\}$ in the arithmetical progression $\{a+dq\}_{d\ge 0}$. Our result is as follows: the asymptotic formula \begin{equation}\label{YW:result} S(x; q, a) := \sum_{\substack{m\in \mathcal{S}(x)\\ m\equiv a ({\rm mod}\,q)}} 1 = \frac{2\sqrt{x}}{q} + O((x/q)^{1/3}\log x) \end{equation} holds uniformly for $x\ge 3$, $1\le q\le x^{1/4}/(\log x)^{3/2}$ and $1\le a\le q$, where the implied constant is absolute. The special case of \eqref{YW:result} with fixed $q$ and $a=q$ confirms a recent numeric test of Heyman.
Fichier principal
Vignette du fichier
Distribution of floor function set.pdf (116.97 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03504153 , version 1 (28-12-2021)

Identifiants

Citer

Yahui Yu, Jie Wu. DISTRIBUTION OF ELEMENTS OF A FLOOR FUNCTION SET IN ARITHMETICAL PROGRESSION. Bulletin of the Australian Mathematical Society, 2022, 106 (3), pp.419-424. ⟨10.1017/S000497272200017X⟩. ⟨hal-03504153⟩

Collections

UPEC
21 Consultations
77 Téléchargements

Altmetric

Partager

More