Regularity theory and geometry of unbalanced optimal transport - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

Regularity theory and geometry of unbalanced optimal transport

Résumé

Using the dual formulation only, we show that regularity of unbalanced optimal transport also called entropy-transport inherits from regularity of standard optimal transport. We then provide detailed examples of Riemannian manifolds and costs for which unbalanced optimal transport is regular. Among all entropy-transport formulations, Wasserstein-Fisher-Rao metric, also called Hellinger-Kantorovich, stands out since it admits a dynamic formulation, which extends the Benamou-Brenier formulation of optimal transport. After demonstrating the equivalence between dynamic and static formulations on a closed Riemannian manifold, we prove a polar factorization theorem, similar to the one due to Brenier and Mc-Cann. As a byproduct, we formulate the Monge-Ampère equation associated with Wasserstein-Fisher-Rao metric, which also holds for more general costs.
Fichier principal
Vignette du fichier
RegularityandgeometryofUOT.pdf (362.65 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03498098 , version 1 (20-12-2021)
hal-03498098 , version 2 (26-03-2024)
hal-03498098 , version 3 (27-06-2024)

Identifiants

Citer

Thomas Gallouët, Roberta Ghezzi, François-Xavier Vialard. Regularity theory and geometry of unbalanced optimal transport. 2021. ⟨hal-03498098v1⟩

Collections

LIGM_SIGNAL
150 Consultations
296 Téléchargements

Altmetric

Partager

More