Generating Functions for Certain Weighted Cranks - Archive ouverte HAL
Article Dans Une Revue Hardy-Ramanujan Journal Année : 2022

Generating Functions for Certain Weighted Cranks

Résumé

Recently, George Beck posed many interesting partition problems considering the number of ones in partitions. In this paper, we first consider the crank generating function weighted by the number of ones and obtain analytic formulas for this weighted crank function under conditions of the crank being less than or equal to some specific integer. We connect these cumulative and point crank functions to the generating functions of partitions with certain sizes of Durfee rectangles. We then consider a generalization of the crank for $k$-colored partitions, which was first introduced by Fu and Tang, and investigate the corresponding generating function for this crank weighted by the number of parts in the first subpartition of a $k$-colored partition. We show that the cumulative generating functions are the same as the generating functions for certain unimodal sequences.
Fichier principal
Vignette du fichier
44Article02.pdf (280.38 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03494856 , version 1 (20-12-2021)

Identifiants

Citer

Shreejit Bandyopadhyay, Ae Ja Yee. Generating Functions for Certain Weighted Cranks. Hardy-Ramanujan Journal, 2022, Special commemorative volume in honour of Srinivasa Ramanujan - 2021, Volume 44 - Special Commemorative volume in honour of Srinivasa Ramanujan - 2021, pp.19 -- 31. ⟨10.46298/hrj.2022.8922⟩. ⟨hal-03494856⟩

Collections

IRISA-D7
64 Consultations
560 Téléchargements

Altmetric

Partager

More