Advantages of Covalent Immobilization of Metal‐Salophen on Amino‐Functionalized Mesoporous Silica in Terms of Recycling and Catalytic Activity for CO 2 Cycloaddition onto Epoxides - Archive ouverte HAL
Article Dans Une Revue European Journal of Inorganic Chemistry Année : 2021

Advantages of Covalent Immobilization of Metal‐Salophen on Amino‐Functionalized Mesoporous Silica in Terms of Recycling and Catalytic Activity for CO 2 Cycloaddition onto Epoxides

Résumé

NiII and MnIII Schiff base complexes (Salophen-Ni and Salophen-MnCl) bearing a pending carboxylic group were prepared and characterized. Both complexes were grafted onto a mesoporous amino-functionalized SBA-15 silica, by formation of an amide function between the propylamine groups of the support and the carboxylic acid functions of the salophen ligand (corresponding respective to 1.30 wt.% of Ni and 1.06 wt.% of Mn). The co-catalytic behaviour of the free and grafted complexes was then evaluated in the CO2 cycloaddition reaction onto styrene oxide, using tetra-butylammonium bromide (n−Bu4NBr) as the main catalyst. In homogeneous conditions, the MnIII Schiff base complex and the NiII one, to a lesser extent, behave as efficient co-catalysts for this reaction (styrene conversion of 100 % and 65 % respectively after 3 h at 120 °C, under 15 bars of CO2). Upon immobilization at the surface of the amino-functionalized SBA-15, we showed that the co-catalytic activity of the less efficient one, i. e. Ni2+ salophen complex, could be enhanced (reaching a full conversion after 7 h), hence highlighting a potential synergistic effect between the unused amine functions of the support and the Ni2+ salophen co-catalyst. Both salophen complexes were successfully re-used in homogeneous conditions or after their immobilization without any appreciable loss of activity. This work is only a first step towards a completely heterogeneous catalytic system, in which the tetraalkylammonium halide catalyst and the metal-salophen co-catalyst will both be covalently anchored on the same support
Fichier principal
Vignette du fichier
202100150.pdf (1.46 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03485785 , version 1 (17-12-2021)

Identifiants

Citer

Matthieu Balas, Sébastien Beaudoin, Anna Proust, Franck Launay, Richard Villanneau. Advantages of Covalent Immobilization of Metal‐Salophen on Amino‐Functionalized Mesoporous Silica in Terms of Recycling and Catalytic Activity for CO 2 Cycloaddition onto Epoxides. European Journal of Inorganic Chemistry, 2021, 2021 (16), pp.1581-1591. ⟨10.1002/ejic.202100150⟩. ⟨hal-03485785⟩
123 Consultations
118 Téléchargements

Altmetric

Partager

More