Strain engineering in III-V photonic components through structuration of SiN x films
Résumé
We describe work to quantify the effects of structured dielectric thin films, such as SiNx, at the surface of III-V semiconductors, in terms of strain engineering with applications to photonic components such as waveguides and lasers. We show that the strain in the semiconductor can be engineered by controlling the stress in the dielectric thin film by tuning its deposition process. In the first part of this study, we describe how we can control the amount of this built-in mechanical stress, in the case of SiNx, over a large range, from highly tensile (300 MPa) to highly compressive (-800 MPa), using two different kinds of plasma-enhanced chemical vapor deposition reactors: a standard capacitively-coupled reactor with radio-frequency excitation and an electron cyclotron resonance reactor with microwave excitation. We focused on characterizing and understanding these thin films' optical and chemical bonding properties through spectroscopic ellipsometry and Fourier transform infrared spectroscopy. We have also studied their mechanical properties experimentally using the wafer curvature measurement technique, microstructure fabrication, and nano-indentation measurements. In the second part, we show accurate
Domaines
Sciences de l'ingénieur [physics]Origine | Fichiers produits par l'(les) auteur(s) |
---|