Source and metric estimation in the eikonal equation using optimization on a manifold - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

Source and metric estimation in the eikonal equation using optimization on a manifold

Résumé

We address the estimation of the source(s) location in the eikonal equation on a Riemann surface, as well as the determination of the metric when it depends on a few parameters. The available observations are the arrival times or are obtained indirectly from the arrival times by an observation operator, this frame is intended to describe electro-cardiographic imaging. The sensitivity of the arrival times is computed from Log x the log map wrt to the source x on the surface. The Log x map is approximated by solving an elliptic vectorial equation, using the Vector Heat Method. The L 2-error function between the model predictions and the observations is minimized using Gauss-Newton optimization on the Riemann surface. This allows to obtain fast convergence. We present numerical results, where coefficients describing the metric are also recovered like anisotropy and global orientation.
Fichier principal
Vignette du fichier
papier_IPI_soumis.pdf (1.01 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03475139 , version 1 (10-12-2021)

Identifiants

  • HAL Id : hal-03475139 , version 1

Citer

Jérôme Fehrenbach, Lisl Weynans. Source and metric estimation in the eikonal equation using optimization on a manifold. 2021. ⟨hal-03475139⟩
215 Consultations
185 Téléchargements

Partager

More