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Abstract. We address the estimation of the source(s) location in the eikonal
equation on a Riemann surface, as well as the determination of the metric when

it depends on a few parameters. The available observations are the arrival times
or are obtained indirectly from the arrival times by an observation operator,

this frame is intended to describe electro-cardiographic imaging. The sensitiv-

ity of the arrival times is computed from Logx the log map wrt to the source
x on the surface. The Logx map is approximated by solving an elliptic vecto-

rial equation, using the Vector Heat Method. The L2-error function between

the model predictions and the observations is minimized using Gauss-Newton
optimization on the Riemann surface. This allows to obtain fast convergence.

We present numerical results, where coefficients describing the metric are also

recovered like anisotropy and global orientation.

1. Introduction.3

1.1. Context. The study presented in this article aims to reconstruct from par-4

tial measurements the sources locations and the metric associated to an eikonal5

equation on a manifold. The measurements can be performed either directly on6

the same manifold, or indirectly, e.g. on another surface surrounding the latter.7

This problem is closely related to a practical issue in electrocardiology, which is the8

inverse problem of electrocardiographic imaging (ECGI).9

ECGI is a non-invasive imaging modality used to reconstruct the electrical activ-10

ity of the heart. It combines electrical potential measurements on the torso surface11

with a geometric description of the heart and torso. Electric measurements are per-12

formed on the torso from a dense array of electrodes (typically 250 electrodes) that13

measure the potential at a high time rate (typically 2 kHz). The geometric descrip-14

tion of the torso and heart is obtained through Computerized Tomography (CT)15

or Magnetic Resonance Imaging (MRI) and thus is personnalized for each patient.16
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2 JÉRÔME FEHRENBACH AND LISL WEYNANS

ECGI aims at bridging the gap between the classical non-invasive 12-leads ECG17

that lacks in sensitivity and specificity and the invasive intra-cardiac measurements18

with catheters.19

The determination of electrical activity of the heart can in principle be obtained20

by solving at each time instant a Cauchy problem for the Laplace equation in the21

torso volume to reconstruct epicardial potential maps from body surface potential22

maps. However this problem is extremely ill-posed and an adequate regularization23

strategy has to be used to deal with this ill-posedness, for example Tikhonov regu-24

larization, or by incorporating anatomical knowledge or other a-priori information.25

Another strategy consists in using the global information available during the26

complete measurement time interval, instead of processing each time-step indepen-27

dently. Taking into account the fact that electric potential in the heart are obtained28

by the propagation of an electric wave is an alternative way of regularizing the in-29

verse problem, by considering information from other time steps. The present work30

is an attempt in this direction. The electrical conduction in the heart is described31

by the bidomain model [6] which considers the interaction between intracellular and32

extracellular media. We consider here the anisotropic eikonal equation, which is a33

simplified model of propagation of the electrical activation front in its asymptotic34

regime [11], but yet accurate enough to produce realistic electrograms [25, 20, 21].35

The solution T of the eikonal equation is the depolarization time of the heart
surface, i.e. T (x) is the arrival time of the activation front at the point x. The
equation reads {

‖∇T‖2D(x) = 1,

T (x0
i ) = τi, i = 1 . . . s,

where36

- the tensor quantity D(x) describes the anisotropic conduction. It accounts for37

the local fiber orientation that induces an anisotropy in conduction velocity of the38

cardiac tissue.39

- the boundary conditions depict the initialization of the electric front at earliest40

activation sites, that we will call throughout this paper the sources. In other words41

a front is initiated at the source x0
i at time τi. Physiologically, the source x0

i is42

activated by the network of Purkinje fibers.43

We consider in the present work only the surface of the heart (epicardial po-44

tential) and the domain is viewed as a 2-dimensional manifold equipped with the45

metric induced by D(x). The formulation of the eikonal equation in this context46

requires more material and is provided in equation (1).47

At this point, let us remark that the aforemetionned electrical reconstructions48

on the heart surface are used to build activation maps that are used by cardiolo-49

gists in order to help to diagnose and treat cardiac conditions. In these activation50

maps some features are particularly interesting to be detected: the earliest sites of51

electrical activation (and their activation times), and the presence of zones where52

the front propagation speed is slower. Thus one additional advantage of using an53

eikonal equation is that these features are naturally parameters of the model.54

In this paper, we formulate rather the eikonal equation in the framework of55

a Riemannian manifold, because this framework is convenient to describe partial56

differential equations on a surface with local properties. In this case the conductivity57

is directly taken into account in the metric of the manifold. The inverse problem to58

solve amounts to identify the sources, their activation times and possibly parameters59
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of the metric, from direct (on the heart surface) or indirect (on another surface)60

electrical measurements. In practice, we use a variational approach and minimize a61

quadratic cost function measuring the mismatch between the observations and the62

predictions of the model. To this purpose we compute the sensitivity of the arrival63

times of the eikonal equation with respect to the source locations, and with respect64

to the metric. The sensitivity with respect to the source locations is obtained65

by computing Logx, which is the logarithmic map with respect to the source x66

on the surface of the manifold. The Logx map is approximated by solving an67

elliptic vectorial equation, namely the Vector Heat Method [26]. The sensitivity68

with respect to the metric is obtained by an algorithmic differentiation based on69

the computation of the distance map with the Heat method. Using the Heat method70

and the Vector Heat Method avoids to compute geodesics on the manifold one by71

one, which would require a much higher computational cost.72

1.2. Related work. Let us briefly present some recent works that adress similar73

problems. In [23], the electrical activity of the endocardium is modelled by an74

isotropic eikonal equation. The objective is to reconstruct the Purkinje network,75

that provides the earliest activation sites (together with their activation times).76

The available data are endocardial measures of the arrival times at N sampling77

points (N of the order of a few 100s). In this work an iterative method adapts78

the tree-like structure of the Purkinje network in order to increase the number79

of sampling points where the predictions are close from the measurements. The80

work [16] considers a bidomain model, which is more accurate than the eikonal81

approximation. The geometry is a square with horizontal fiber directions, and the82

sources locations are known. A numerical investigation is performed in order to83

evaluate the identifiability of the stimulus location and duration, with different84

measurement models: the extracellular potential is measured either in the domain,85

or at the boundary or at part of the boundary. The findings are that a local86

convergence is observed in all cases, using L-BFGS algorithm.87

The work [19] adresses source localization, and uses the viscous eikonal equation,88

where a term −ε∆T is added. It is thus a nonlinear elliptic equation. The sources89

are described by small subdomains ωi where a homogeneous Dirichlet condition90

is imposed, therefore it amounts to assume that all the sources are initiated at91

time τi = 0. In this framework, a shape derivative of the cost function (quadratic92

mismatch between observed and predicted arrival times measured on part of the93

boundary) is calculated. It requires the solution of an adjoint problem and provides94

a vector field h that is used to advect the sources in a direction that decreases the95

objective function.96

The work [24] adresses real ECG data processing. The activation time is as-97

sumed to satisfy an anisotropic eikonal equation, where the conductivity’s principal98

direction is obtained by a rule-based method excepted at the scars which are iden-99

tified from MRI images. A derivative-free algorithm is used to iteratively estimate100

the sources activations times and some electrical parameters, and then sources with101

small region of influence are removed. Results on a cohort of 11 patients are pre-102

sented.103

The reference that uses the closest approach from ours is [14], where the model104

is the anisotropic eikonal equation. The quadratic cost function is minimized using105

an over-relaxed gradient descent, and the location and timing of the sources are106

estimated. The Logx map is computed by extracting each geodesic and the heavy107
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computational load requires the use of a Graphic Processing Unit. The complemen-108

tary contribution [15] by the same group proposes to estimate the conduction tensor109

assuming the source is known. The reconstruction is based on the minimization of110

a cost-function with a Total-Variation-like regularization that tends to align the111

fibers.112

1.3. Main contributions and organization. The present paper intends to pro-113

pose and validate an efficient computational method to solve the inverse problem114

of location of sources and identification of metric parameters. It is organized as fol-115

lows: in section 2 we present the continuous problem formulated in the framework116

of Riemannian manifolds. In section 3 we compute the sensitivity of the arrival117

times of the eikonal equation with respect to the source locations and to the met-118

ric. In section 4 we present our methodology to solve the inverse problem with a119

least squares minimization using a manifold Gauss-Newton method. In section 5120

we provide details about the numerical methods used to compute in practice the121

sensitivities with respect to the source locations and to the metric and finally in122

section 6 we present the validation of the method on several test cases.123

2. The continuous problem.124

2.1. Notation. Let M be a 2-dimensional Riemannian manifold. The tangent
space to M at the point x is denoted TxM. The inner product 〈.|.〉x on the space
TxM induces a linear mapping

A(x) : TxM→ T ∗xM,

such that for any two vectors v, w ∈ TxM, the following identity is true:

〈v|w〉x = 〈A(x)v|w〉T∗xM,TxM.

The associated norm is denoted ‖v‖x. A(x) is a positive definite matrix, whose125

coefficients define a metric on M.126

On the cotangent space T ∗xM the inner product is defined, for any two covectors
p, q ∈ T ∗xM, by:

〈p|q〉T∗xM = (p|A(x)−1q)T∗xM,TxM.

The associated norm is denoted ‖p‖T∗xM.127

2.2. Forward model for one source. Let x ∈ M. The arrival time of a front128

issued from the point x at time t = 0 is the unique viscosity solution u [8] of the129

eikonal equation130

‖∇u(y)‖2TyM =
(
A(y)∇u(y)|∇u(y)

)
T∗yM,TyM

= 1, u(x) = 0. (1)

Here ∇u(y) ∈ TxM denotes the gradient of u on the Riemannian manifold,
defined as

∀h ∈ TyM, du(y).h = 〈∇u(y)|h〉y.
Equivalently, the value u(y) is the length of the shortest path γx→y joining x and131

y:132

u(y) =

∫
t

‖γ′x→y(t)‖γx→y(t) dt. (2)

The path γx→y is the geodesic joining x and y. It achieves the minimum in the
following functional: ∫

t

‖γ′(t)‖γ(t) dt,
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among all curves parametrized by t ∈ [0, 1].133

In order to emphasize that u is the solution of the eikonal equation issued from
the point x, we will also write u = φx, or use the alternative notation φ(x → y) =
u(y) = φx(y). It is well known [8, 3] that u is differentiable everywhere, excepted at
the point x and at the cut-locus which is the set of points that can be attained by
different shortest geodesics with the same length issued from x. The measure of the
cut-locus is zero. Moreover the differential of u can be estimated using a variation
of the geodesic from x to y [22]. It is given by

du(y).h =
〈γ′x→y(1)|h〉y
‖γ′x→y(1)‖y

.

But it follows from the formulation in terms of geodesics (2) that x and y play
symmetric roles, and therefore if y 6= x is fixed and is not in the cut locus, then
φ(x→ y) is differentiable w.r.t x and

Dxφ(x→ y).h = −
〈γ′x→y(0)|h〉x
‖γ′x→y(0)‖x

,

where γ is the geodesic joining x and y. This formula can be also found in [14].134

This result can be formulated using the Exponential map, and its inverse the Log
map, that are defined as follows. For v ∈ TxM there is a unique geodesic γ issued
from x with tangent vector γ′(0) = v, at least for v in a neighborhood of 0. Then
by definition

Expxv := γ(1),

in other words Expxv is obtained by following along the geodesic with initial direc-
tion v. Conversely, for y ∈ M if there is a unique shortest geodesic γ from x to y
then by definition

Logx(y) = γ′(0).

It follows that for v ∈ TxM and for y = Expxv:

Dxφ(x→ y).h = −〈v|h〉x
‖v‖x

,

which reads also, for y ∈M:

Dxφ(x→ y).h = −〈Logx(y)|h〉x
‖v‖x

.

When the front starts from the point x at some instant τ called the activation time
of x, then the arrival time F (y) at any point y is simply shifted by the activation
time:

F (y) = τ + φ(x→ y).

2.3. Observation operator. The observations are obtained from the arrival times135

map F = τ+φ(x→ .). It is continuous onM, even differentiable almost everywhere.136

We will use the fact that F ∈ L2(M).137

In a general inverse problem framework the observation operator is given by

G : L2(M)→ Y,

where Y is a Hilbert space equipped with a norm ‖.‖Y . Our theoretical derivations138

will use a general differentiable observation operator G, but in practical cases of139

interest we will use either of140

• Y = L2(ω), where ω ⊂M and G consists in observing u on the subdomain ω,141
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• when thinking of electrocardiography, Y = L2(ω × [0, T ]), where ω represents142

the union of the electrodes, andG consists of determining the signal at the electrodes143

during the time interval [0, T ]. The modelling of this map requires the potential of144

action and the conductivity map between the surface of the heartM and the torso145

where the electrodes are located.146

As a summary the observations depending on the source location x and the
activation time τ are obtained as follows:

M×R −→ L2(M) −→ Y

(x, τ) 7−→ F (x, τ) := τ + φ(x→ .) 7−→ G ◦ F (x, τ).

3. Tangent model.147

3.1. Sensitivity w.r.t the source location. In order to compute the sensitivity
of the source-to-observations operator, we use the chain rule. The derivative of G
depends on the specific choice of G and will be detailed for each example presented
in section 6. We focus here on the sensitivity of F : x 7→ φ(x→ .) and suppose for
the moment that the activation time is τ = 0. We have proved that if y 6= x does
not belong to the cut locus, then

Dxφx(y).h = −〈Logx(y)|h〉x.
This is a pointwise differentiability result, for a fixed point y. It remains to prove148

the following global differentiability result:149

Theorem 3.1. LetM be a complete Riemannian manifold, and x† ∈M. Let K be
a compact included in the complementary of the cut locus wrt x†. Then the mapping

M → L2(K)

x 7→ φx = φ(x→ .)

is differentiable at the point x†, and150

Dxφx = −A(x†)Logx† . (3)

The proof is based on the use of the Expx map as a chart for K and is postponed151

to the Appendix.152

3.2. Case of s sources. In practice, there may be a (small) number s of sources153

to identify, as well as the activation time of each source, that is the initial condi-154

tion. Let us denote these sources x1, . . . xs and the activation times τ1, . . . τs. The155

equation to be solved is then156

‖∇F (y)‖2TyM = 1, F (xi) = τi, i = 1 . . . s. (4)

There is a compatibility condition between the different activation times [2, 5],
namely for any pair of sources the distance between these sources must be larger
than the difference of their respective activation times. Under this condition, the
manifoldM can be partitioned into Voronoi regions relative to each of the sources,
up to a set of measure zero called the cut locus. The Voronoi region Vi of a source
xi is the set of points that are closer from xi than from any other source, once the
difference in activation times is taken into account. More precisely

Vi = {y ∈M| τi + φ(xi → y) < τj + φ(xj → y) for j 6= i}.
The solution F of (4) can also be defined by

F (y) = min
1≤j≤s

τj + φ(xj → y).
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The Voronoi region Vi is the set of points y where i achieves strictly the min in the157

equation above.158

The modification of the activation time τi of the source xi has the effect of159

changing the value of F in Vi by adding a constant to F , and also changing the160

Voronoi region (it grows if τi decreases and shrinks if τi increases). However the161

modification of the Voronoi region has an impact that is of second order on the162

value of F . More precisely, a variation of τi of value ε induces a displacement of163

the boundary of the Voronoi region smaller than ε, and the value of F in the region164

in-between (with area O(ε)) is modified by a value smaller than ε. On the other165

hand, in Vi (area O(1)) the value of F is modified by a value equal to ε. Therefore166

we will neglect the variation of Vi in our numerical computation of the first order167

derivative.168

Similarly, the effect of the displacement of the source xi affects the value of F169

in Vi as well as the boundary of Vi. We neglect the second effect in our numerical170

simulations.171

3.3. Sensitivity w.r.t the metric. We are also interested in the case where the172

metric A(x) is variable. It is hopeless to recover the value of the metric at each173

point ofM, therefore we will assume that the metric depends on a finite number p174

of parameters α = (α1, . . . , αp). The metric at the point x will be denoted Aα(x).175

The arrival time u solution of (1) depends also on α and we emphasize this
dependence by denoting

φα(x→ y)

the solution with the metric Aα(x).176

When the parameters α that define the metric are perturbed in some direction
β, let us study if the quantity

Dαφ
α(x→ y).β

can be defined. We have

φα(x→ y) =

∫ 1

t=0

‖γα′(t)‖γα(t)dt,

where γα is the geodesic from x to y for the metric Aα. In other words

φα(x→ y) =

∫ 1

t=0

〈Aα(γα(t))γα′(t)|γα′(t)〉1/2dt.

When α is perturbed in some direction β, the geodesic γα is perturbed in some
direction δ that depends linearly on β. We have

Dαφ
α(x→ y).β =

∫
t

〈Aα(γα(t))γα′(t)|δ′(t)〉
〈Aα(γα(t))γα′(t)|γα′(t)〉1/2

+
〈DβAα(γα(t))γα′(t)|γα′(t)〉
2〈Aα(γα(t))γα′(t)|γα′(t)〉1/2

dt.

The contribution of the first term vanishes since it is the first variation of the length
of the geodesic γα in the direction δ. It remains

Dαφ
α(x→ y).β =

∫
t

〈DβAα(γα(t))γα′(t)|γα′(t)〉
2〈Aα(γα(t))γα′(t)|γα′(t)〉1/2

dt,

which proves that φα(x → y) is differentiable wrt α, and the derivative is given177

by an integral along the geodesic. In our numerical solution, we implemented an178

algorithmic differentiation of the Heat Method, see Algorithm 3 below. This allows179

to bypass the tedious computation of ”all” the geodesics.180
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4. Parameters estimation. We propose an iterative algorithm to estimate the181

source location, the activation time and the parameters of the metric. We first182

detail the approach used for the source location and activation time, since this part183

involves optimization on a manifold.184

4.1. Location of the source and activation time. When the metric is fixed,185

and the source and the activation time are to be retrieved, we proceed using a186

variational approach. The aim is to minimize the misfit between the observations187

and the predictions of the model in a L2 sense. More precisely consider the cost188

function defined for (x, τ) ∈M×R by189

J(x, τ) =
1

2
‖G(τ + φx)− gOBS‖2Y . (5)

In this writing, x is the location of the source, and gOBS is the vector describing
the observations, that can be viewed as

gOBS = G(τ∗ + φx?) + η,

where x? is the true location of the source, τ? is the true activation time and η is190

a noise that affects the measurements.191

We solve the least square minimization of J by following the approach of Gauss192

Newton optimization on a manifold sketched in [1]. It is an iterative method where193

the k-th iterate is denoted (xk, τk). We determine the direction (v, η) ∈ TxM that194

minimizes the linearized model195

`(v, η) =
1

2
‖G(φxk) +Dx(G(τk + φxk)).v +Dτ (G(τk + φxk)).η − gOBS‖2Y . (6)

We estimate the linear term using the chain rule:196

Dx(G(τk + φxk)).v +Dτ (G(τk + φxk)).η = DG(Dφxk .v) + ηDG.1. (7)

The first quantity can be explicitly computed when v is given, since we have seen197

that Dφx(y).v = 〈Logx(y)|v〉TxM. In practice, we determine Dx(G(τ + φx)).v for198

two values of the vector v that form a basis of TxM, this gives Dx(G(τ +φx)). The199

second quantity is DG.1 which is known analytically for practical cases of G. Once200

the linear maps TxM→ Y and R → Y are known, the minimization of the linear201

model (6) is a least-squares problem in dimension 3. We denote (v?, η?) its solution.202

Following [1] the next iterate in the minimization algorithm is

xk+1 := Expxk(v?), τk+1 := τk + η?.

4.2. Localization of several sources and their activation time. In the case203

of a number s of sources, the modification of the location or the activation time of204

one source affects only its Voronoi region. The linear model (6) is replaced by an205

analogous expression, where the i-th source affects only Vi.206

4.3. Joint estimation of the metric and source location. Suppose that in
addition to the location of the source and the activation time, one also wishes to
estimate the metric. We assume here again that the metric depends on a small
number p of parameters: α = (α1, . . . , αp). The cost function to be minimized is
now:

J(α, x, τ) =
1

2
‖G(τ + φαx )− gOBS‖2Y .
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The linearized model around (α, x, τ) in the direction (β, v, η) is given by207

`(β, v, η) =
1

2
‖G(τ+φαx )+Dα(G(τ+φαx )).β+Dx(G(τ+φαx )).v+Dτ (G(τ+φαx )).η−gOBS‖2Y .

(8)
The minimization of this least squares problem of dimension p+ 3 leads to the next
iterate. It is straightforward to compute when the linear parts are known. We
have already given the linear part corresponding to the variables v and η. For the
variable β the chain rule yields

Dα(G(τ + φαx )).β = DG(Dαφ
α
x .β).

5. Practical Implementation.208

5.1. Discretization of the surface. The manifoldM is discretized as a triangu-209

lated surface Mh, composed of a set of vertices {i} and a set of edges {ij}. The210

metric A is given in practice by the lengths of the edges of the triangulation. In211

order to solve the eikonal equation using Fast-Marching methods the triangulation212

needs to satisfy an acuteness condition, meaning that all the triangles must be acute213

[17]. We use in the present work the Heat Method to solve the eikonal equation see214

subsection 5.2, which requires a slightly different geometric condition, namely the215

triangulation must be Delaunay w.r.t. the considered metric [4, 26].216

In order to encode the tangent space TxM to some vertex x we choose a reference217

direction along an edge issued from x. The sum of the angles issued from x is218

normalized to 2π, see [18]. A tangent vector at x is then encoded as a complex219

number attached to x. The mass matrix as well as the stiffness matrices of the220

Laplace-Beltrami and the connection Laplacian operators are assembled following221

[26].222

5.2. Direct problem. We discretize the space of possible locations for the source223

x, by imposing that the point x is a vertex of the mesh. The distance map φx224

is solved using the Heat Method [9], which requires to assemble the matrix of the225

Laplace-Beltrami operator on the triangulated surface Mh. The Heat Method re-226

lies on a well-known relationship between geodesic distance and heat kernel on a227

Riemanian manifold [27]. In practice, with the Heat Method, first the heat kernel228

is solved, then its gradient is normalized to recover the gradient of the distance229

field, then the distance field itself is reconstructed from this gradient. This proce-230

dure circumvents the high accuracy requirements if the distance field was directly231

reconstructed from the heat kernel.232

Algorithm 1 Heat-Method to compute φx, see [9]

Input: Triangulated surface Mh, metric A, source point x.
Output: φx the distance map to x.
Assemble the discrete Laplace-Beltrami operator ∆.
Fix some small time τ > 0 and set u0 := δx (Dirac mass).
Solve for u the implicit Euler equation (Id− τ∆)u = u0.
Evaluate the vector field X = −∇u/|∇u|.
Solve the Poisson equation ∆φ = ∇ ·X.

Note that the change of variable u = exp(v/
√
τ) leads to v satisfying

−
√
τ∆v + |∇v|2 − 1 = 0
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outside the source point. This is exactly the vanishing viscosity solution of the233

eikonal equation with parameter
√
τ . The steps in algorithm 1 that construct φ234

from u amount to straighten up the (smooth) vanishing viscosity solution by weakly235

imposing a gradient of norm 1.236

In practice an heuristic is proposed in [9] that uses for u the average between237

the solutions with homogeneous Dirichlet and Neumann boundary condition. This238

note does not apply to the examples presented in Section 6 whereM is a sphere or239

a closed surface hence has no boundary.240

5.3. Numerical derivative w.r.t. the source location. Following equations241

(7) and (3), it suffices to compute the discrete Logx map on Mh to obtain the242

sensitivity w.r.t. x. In order to compute the Logx map, we use the Vector Heat243

Method [26] which requires the connection Laplacian. We provide here a brief244

description and a sketch of the algorithm. For a more complete description we refer245

the reader to [26]. The Vector Heat Method relies on the result that the vector246

heat kernel on Riemannian manifolds behaves like parallel transport along shortest247

paths.248

The connection Laplacian is a second derivative on vector fields, and is discretized249

as a complex matrix on the 2-dimensional surface Mh. The Vector Heat Method250

has the advantage of providing Logx(y) for every mesh point y in one solve, and251

avoids the costly computation of geodesics issued from each point y. This requires252

the assembly of the (complex valued) stiffness matrix of the connection Laplacian.253

Algorithm 2 Vector Heat-Method to compute Logx, see [26]

Input: Triangulated surfaceMh, metric A, source point x, reference unit vector
e1 ∈ TxMh.
Output: Logx the log map with origin x.
Assemble the discrete connection Laplacian ∆∇.
Fix some small time τ > 0 and set Y0 := δxe1 (Dirac mass).
Integrate ∂tYt = ∆∇Yt between 0 and τ with Y (t = 0) = Y0.
The horizontal vector field is then H = Yτ/|Yτ |.
Define R0 the discretized radial vector field issued from x.
The radial vector field R is obtained by transporting R0.
The coordinates (r, ϕ) of each vertex y are obtained using R,H and the distance
map φx.
Set Logx(y) = r(cosϕe1 + sinϕe⊥1 ).

5.4. Algorithmic differentiation w.r.t. the metric. When the metric is also254

to be recovered, in the case when it depends on the parameters α = (α1, . . . , αp),255

the description of the problem must include the derivative of each edge length w.r.t.256

each parameter αk. In this case we compute the derivative of the arrival time φx257

w.r.t. to αk using algorithmic differentiation as follows.258

The numerical approximation of the arrival time φx is computed using Algorithm259

1. We use algorithmic differentiation (chain rule) to estimate the derivative of φx260

w.r.t. the metric. Let us denote Ak = ∂αk
A, and we assume that Ak is given261

on the computational mesh, as the derivative of the length of each edge. This is262

the case in our examples where the metric depends on a few parameters through263

explicit analytic formulas.264
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•

•

•

A

C

B

α

β

γ

Figure 1. Some triangle ABC of the mesh and the associated angles.

The key is to estimate the derivative of the Laplace-Beltrami operator ∆. Let
us have more insight on the assembly of ∆ as a finite element matrix. For each
triangle in the mesh Mh the contribution to the stiffness matrix is

−1

2

b+ c −c −b
−c c+ a −a
−b −a a+ b


where a, b, c are cotangents of the angles of the considered triangle, see Figure 1.
The values of the cotangents are related to the lengths of the edges lAB , lAC , lBC
using the cosine formula:

a = cotα =
cosα

sinα
=

cosα√
1− cosα2

, cosα =
l2AB + l2AC − l2BC

2lABlAC
.

From the knowledge of ∂αk
A one can estimate the derivative of the edge lengths

∂αk
lAB , ∂αk

lAC , ∂αk
lBC . Using the above formulas and the chain rule yields ∂αk

a.
This allows to assemble the derivative of the stiffness matrix ∂αk

∆, with a contri-
bution in each triangle of the form

−1

2

∂αk
b+ ∂αk

c −∂αk
c −∂αk

b

−∂αk
c ∂αk

c+ ∂αk
a −∂αk

a

−∂αk
b −∂αk

a ∂αk
a+ ∂αk

b


The derivative ∂αk

φx of φx is obtained with the following algorithm that is ob-265

tained by differentiating Algorithm 1:

Algorithm 3 Differentiation of the Heat-Method to compute φ′ = ∂αk
φx

Input: Triangulated surfaceMh, metric A, derivative ∂αk
A of the metric, source

point x.
Output: φ′ = ∂αk

φx the derivative of the distance map to x.
Assemble the derivative of Laplace-Beltrami operator ∆′ = ∂αk

∆.
Fix some small time τ > 0 and set u0 := δx (Dirac mass).
Solve for u the implicit Euler equation (Id− τ∆)u = u0.
Solve for u′ the equation (Id− τ∆)u′ = τ∆′u.

Evaluate the vector field X ′ = −|∇u|∇u
′ − (∇u · ∇u′)∇u/|∇u|

|∇u|2
.

Solve the Poisson equation ∆φ′ = ∇ ·X ′.

266
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6. Numerical results. The test cases 1, 2 and 3 are obtained by direct simulation267

on a sphere. The anisotropic Riemannian metric is defined using the following 3268

parameters: (α, κ, d‖) where α is the angle between the principal axis and the269

meridians on the sphere, κ is the transverse slowness and d‖ is the longitudinal270

slowness.271

The simulations were run on a mesh comprising approx. 6000 nodes and 12000272

triangles. This mesh was generated using Gmsh [13], and then the Delaunay flip273

algorithm [10, 4] was applied to obtain a Delaunay triangulation w.r.t. the metric.274

In order to generate the observations, the anisotropic eikonal equation is solved using275

AGSI [5]. It is deliberate to use a different method to generate the observations276

and to solve the inverse problem, this avoids so-called inverse crime [7].277

All simulations were implemented with Python 3.7 and run on a laptop equipped278

with a 2.5 GHz Intel Core i7 processor.279

6.1. Test case 1: localization of a single source. For this test case the Rie-280

mannian metric is defined by the following parameters: (α = π/3, κ = 1.8, d‖ = 1).281

There is one true point source x∗. The observation operator consists in observing282

the arrival times on a subset of the mesh vertices composed of 50% randomly se-283

lected vertices. The observations are corrupted by an additive Gaussian noise with284

standard deviation equal to a fraction of the largest arrival time ‖φx‖∞, either 1%285

(case 1a) or 10% (case 1b).286

Figure 2. Left: location of the successive iterates xk (red) and
the true source point x∗ (blue), the 3rd iterate x3 coincides with
x∗. Center: evolution of the cost function J for cases 1a and 1b.
Right: evolution of the distance to the solution ‖xk − x∗‖ in both
cases, note that the iterates are the same for cases 1a and 1b.

The initial position of the source is randomly chosen. We present in Figure 2 the287

location of the successive iterates, the evolution of the cost function J defined in (5),288

and the distance of the current iterate to the true location for cases 1a and 1b. We289

present in Table 1 the estimated activation times. The error is of the order of 0.03,290

to be compared to the maximum observed arrival time that is about 4.12. Note that291

in both cases the exact location is retrieved in 3 iterations, and the computational292

time is approx. 60s.293

6.2. Test case 2: localization of two sources. For this test case the Riemann-294

ian metric is the same as test case 1. There are two point sources x∗1, x
∗
2 with295

respective activation times τ∗1 = 0 and τ∗2 = 0.2. The observation operator consists296

in observing the arrival times on a subset of the mesh vertices composed of 50%297

randomly selected vertices. The observations are corrupted by an additive Gaussian298
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True activation time τ? retrieved τ for case 1a retrieved τ for case 1b

0.2 0.229 0.217

Table 1. Reference and estimated activation times for test case 1

True activation times τ?1 /τ?2 retrieved τ for case 2a retrieved τ for case 2b

0/0.2 0.031/0.228 0.017/0.226

Table 2. Reference and estimated activation times for test case 2

noise with standard deviation equal to a fraction of the largest value ‖φx‖∞, either299

1% (case 2a) or 10% (case 2b).300

In order to recover two sources, we implemented the splitting method presented in301

[14]. It consists in starting with one single source, and at each iteration to estimate302

if an improvement is brought if this source is splitted in two sources. More precisely,303

we estimate for a number of N = 20 angles the modification of the cost function304

in the Voronoi region of the considered source if a) the source is (infinitesimally)305

displaced in the given direction b) the source is (infinitesimally) splitted along the306

given direction. If the gain observed by splitting is more than 5 times larger than307

the gain observed by moving the source, then it is decided to split the source. We308

refer the reader to [14] for details, we only emphasize that all the calculations are309

straightforward once the Log map w.r.t. the considered source is known.310

In our implementation, we tried to split the source for the first 4 iterations, then311

every iteration count that is 2 modulo 5. We also decided to suppress at every312

iteration any source which has an almost empty Voronoi region (less than 5% of the313

vertices).314

Figure 3. Left: location of the successive iterates xk before split-
ting (red) and after splitting (green) and the true source points
(blue). Center: evolution of the cost function J for cases 2a and
2b. Right: evolution of the distance to the solution in both cases.

The initial position of the source is randomly chosen. We present in Figure 3 the315

location of the successive iterates, the evolution of the cost function J defined in316

(5), and the distance to the true sources for cases 2a and 2b. The distance of a set317

{xk} to the true sources x∗1, x
∗
2 is defined as max(mink ‖xk − x∗1‖,mink ‖xk − x∗2‖).318

Note that in both cases the exact locations are retrieved. We present in Table 2 the319

estimated activation times. The computational time is approx. 275s for case 2a (17320

iterations) and 140s for case 2b (9 iterations).321
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6.3. Test case 3: joint localization of 2 sources and estimation of the322

metric. For this test case the Riemannian metric is still defined by the following323

parameters: (α = π/3, κ = 1.8, d‖ = 1). There are two point sources x∗1, x
∗
2.324

The observation operator consists in observing the arrival times on a subset of the325

mesh vertices composed of 30% randomly selected vertices. The observations are326

corrupted by an additive Gaussian noise with standard deviation equal to a fraction327

of the largest value ‖φx‖∞, either 1% (case 3a) or 10% (case 3b).328

The metric is to be recovered, from an initial guess (α0 = α + 0.1, κ0 = κ +329

0.1, d0
‖ = d‖ + 0.1). The location of the sources is also to be recovered, starting330

from one source and applying the same splitting criterion that was used in case 2.331

In order to stabilize the algorithm, the metric was not optimized during the first332

4 iterations, which amounts to ask to modify the metric only when the source(s)333

point(s) are in a ”reasonable” region. We present in Figure 4 the location of the334

successive iterates, the evolution of the cost function J defined in (5), and the335

distance to the true sources for cases 3a and 3b. In Figure 5 we show the evolution336

of the parameters of the metric. We present in Table 3 the estimated activation337

times.338

Figure 4. Left: location of the successive iterates xk (red) and the
true source point x∗ (blue). Center: evolution of the cost function
J for cases 3a and 3b. Right: evolution of the distance to the
solution ‖xk − x∗‖ in both cases.

Figure 5. Evolution of the parameters of the metric (dashed: case
3a, line: case 3b). Note that it is not optimized during the first 4
steps.

Here again the perfect location of the sources are retrieved. The computational339

time is approx. 3800s for case 3a (14 iterations) and 3200s for case 3b (11 iterations).340
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True activation times τ? retrieved τ for case 3a retrieved τ for case 3b

0/0.2 0.019/0.214 0.011/0.0215

Table 3. Reference and estimated activation times for test case 3

6.4. Test case 4: mimicking an ECG inversion. In order to demonstrate that
our method can be applied to more realistic problems, we present a case where the
observations do not take place at the surface itself, but are obtained similarly as
electrocardiograms. The surfaceM where the eikonal is solved is the surface of the
heart, and observations points are located on the surface of the torso. The nonlinear
observation operator is constructed as follows. The space for the observations is

Y = {e1, . . . , eN} × {t1, . . . tM},
where the ei are electrodes located on the torso, and tj are observation instants. At341

the instant tj the electric potential at the surface of the heart is modelled using a342

waveform (tanh function) shifted by tj , applied to the arrival times of the wavefront.343

This provides a Dirichlet condition on the surface of the heart for a Laplace equation,344

and the value of the solution at each electrodes minus the value at some reference345

electrode (first electrode) is the observed potential. The observations are then346

corrupted by an additive gaussian noise with standard deviation equal to 1% or347

10% of the largest observed value.348

In this baby simulation that is intended for a proof-of-concept, we used a mesh349

composed of 4236 points, with 1712 nodes on the surface of the heart. The number350

of electrodes is N = 30 and the number of timesteps is M = 40.351

We show in Figure 6 the configuration of the electrodes on the torso and the352

synthetic electrocardiogram for the case of 1% noise. Note that even for such a353

small value of noise, the measurements are markedly perturbed. We show in Figure354

7 the trajectory of the recovered location of the sources, the evolution of the cost355

function and of the distance to the solution. The estimated activation time is356

τ = 0.163, while the reference is 0. This error is to be compared with the maximum357

observed arrival time that is approximately 14.2.358

The computational time is about 20 minutes.359

Figure 6. Left: configuration of the torso (electrodes in red) and
the heart surface (visible by transparency). Right: observations at
the electrodes (mimicking an ECG) obtained with noise-level 1%.
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Figure 7. Left: location of the successive iterates xk (red) and the
true source point x∗ (blue). Center: evolution of the cost function
J . Right: evolution of the distance to the solution ‖xk − x∗‖ in
both cases.

7. Discussion. We have proposed a method to locate the sources and retrieve the360

activation times in the eikonal equation on a manifold, this method also permits361

to estimate the Riemannian metric in the case it depends on a few parameters.362

This method converges in a small number of iterations, this is due to the use of363

Gauss-Newton minimization. In order to compute the Jacobian matrix, we used the364

Vector Heat Method that allows to obtain the Logx map rapidly, without a tedious365

geodesic computation. The solution of the eikonal equation is only approximate366

but numerical simulations showed satisfactory results. The computation times are367

orders of magnitude faster than state-of-the-art methods [14], even though our368

Python implementation was not optimized.369

The activation times were in all cases slighlty overestimated. This may be due370

to the use of the Heat Method that tends to underestimate the distance close to the371

cut-locus. Therefore it has a bias towards underestimating the time needed to fill372

the surface, therefore the least-squares fit should tend to overshoot the activation373

time. This bias is however relatively small in our test cases.374

Appendix: proof of Theorem 3.1. LetM be a complete Riemannian manifold,375

and let us denote for simplicity x ∈M instead of x†. The cut-locus of x is denoted376

Cx, and let Ux = M\ Cx. Then Expx is a diffeomorphism between a star-shaped377

neighborhood Vx of 0 ∈ TxM and Ux [12].378

We have thus a chart between Vx and M minus the cut locus. The Christoffel379

symbols in this chart are denoted Γkij and are smooth on Vx. This means that the380

geodesic equation, for any geodesic that does not intersect the cut locus, is described381

as follows. Let (γ(t))t∈[0,1] be the parametrization in Vx of some geodesic, denote382

(γi(t))1≤i≤2 the coordinates of γ(t). Then γ(t) is the solution of the following second383

order ODE:384 
d2γk

dt2
+
∑
i,j Γkij(γ(t))

dγi

dt

dγj

dt
= 0,

γ(0) = γ0,

γ′(0) = v0.

(9)

The point γ(0) = γ0 ∈ Vx represents the coordinates of the origin of the geodesic,385

and γ(1) the coordinates of its final point in the chart defined by Expx.386
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Consider a compact subset K ⊂ Ux, let y = Expxw ∈ K for some w ∈ Vx. For
α, η > 0 small enough (to be precised later) we define

Γ : B(0, α)×B(w, η) −→ Vx

(γ0, v0) 7−→ γ that solves(9).

We assume that α, η are sufficiently small so that the geodesic remains in Vx. In
words, Γ(γ0, v0) is the geodesic in the parameters domain with starting point γ0

and initial velocity v0. Since all the coefficients in (9) are smooth, it follows that Γ
is a smooth function of its arguments. We define

Φ(γ0, v0) = Γ(γ0, v0)(1),

it is the endpoint in the parameters domain of the geodesic with starting point γ0

and initial velocity v0. For γ0 = 0 and v0 = v we have by definition of the Expx
map:

Φ(0, v) = v.

By smoothness of Φ, for γ0 sufficiently close from 0 the map ϕ(γ0) = Φ(γ0, .) defines387

a diffeomorphism between B(w, η) and its image that contains B(w, η/2). Up to388

reducing the value of α, we can assume that for every γ0 ∈ B(0, α), ϕ(γ0) defines a389

diffeomorphism between B(w, η) and its image that contains B(w, η/2).390

As a consequence, for every γ0 ∈ B(0, α) and every w′ ∈ B(w, η/2),

dVx
(γ0, w

′) =

∫ 1

t=0

‖γ′(t)‖γ(t) dt,

where γ = Γ(γ0, w
′). The notation dVx

(., .) indicates the distance between points
of the parameters domain Vx. All the elements appearing in this formula depend
smoothly on γ0 and w′ with bounded derivatives. Therefore the map

L : B(0, α) −→ C1(B(w, η/2))

γ0 7−→ d(γ0, .)

is differentiable. This result can be translated in M as follows: there exist neigh-
borhoods V of x in M and W of y in M such that the map

L : V −→ C1(W)

x′ 7−→ d(x′, .)

is differentiable. The result is still true if C1(W) is replaced by L2(W) because the391

inclusion C1(W) ⊂ L2(W) is continuous. The result follows by observing that the392

compact set K can be covered by a finite number of neighborhoods W.393
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