Electron Transport in Double-Barrier Semiconductor Heterostructures for Thermionic Cooling - Archive ouverte HAL
Article Dans Une Revue Physical Review Applied Année : 2021

Electron Transport in Double-Barrier Semiconductor Heterostructures for Thermionic Cooling

Résumé

We investigate electron transport in asymmetric double-barrier (Al, Ga)As/GaAs thermionic cooling heterostructures. Measurements of temperature-dependent current-voltage characteristics confirm that the dominant electron transport is a sequential process of resonant tunneling injection into and thermionic emission from the quantum-well (QW) cooling layer. The thermal activation energy of the current is found to be strongly dependent on the bias voltage. Furthermore, instead of showing a simple thermal activation behavior, the current exhibits rather complicated temperature and voltage dependence, particularly when the thermionic emission barrier is low. To establish a quantitative understanding, we develop an intuitive analytical model for sequential electron transport that explicitly takes into account scattering effects in the thermionic emission process from the two-dimensional QW states to the three-dimensional above-barrier states. The observed temperature-dependent sequential current is well explained by the present theory.
Fichier principal
Vignette du fichier
PhysRevApplied.16.064017.pdf (3.65 Mo) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-03472656 , version 1 (09-12-2021)

Identifiants

Citer

Xiangyu Zhu, Marc Bescond, Toshiki Onoue, Gerald Bastard, Francesca Carosella, et al.. Electron Transport in Double-Barrier Semiconductor Heterostructures for Thermionic Cooling. Physical Review Applied, 2021, 16 (6), ⟨10.1103/physrevapplied.16.064017⟩. ⟨hal-03472656⟩
29 Consultations
156 Téléchargements

Altmetric

Partager

More