Learning-based Warm-Starting for Fast Sequential Convex Programming and Trajectory Optimization - Archive ouverte HAL
Communication Dans Un Congrès Année : 2020

Learning-based Warm-Starting for Fast Sequential Convex Programming and Trajectory Optimization

Somrita Banerjee
  • Fonction : Auteur
  • PersonId : 1119435
Thomas Lew
  • Fonction : Auteur
  • PersonId : 1119432
Riccardo Bonalli
Marco Pavone
  • Fonction : Auteur
  • PersonId : 1119402

Résumé

Sequential convex programming (SCP) has recently emerged as an effective tool to quickly compute locally optimal trajectories for robotic and aerospace systems alike, even when initialized with an unfeasible trajectory. In this paper, by focusing on the Guaranteed Sequential Trajectory Optimization (GuSTO) algorithm, we propose a methodology to accelerate SCP-based algorithms through warm-starting. Specifically, leveraging a dataset of expert trajectories from GuSTO, we devise a neural-network-based approach to predict a locally optimal state and control trajectory, which is used to warmstart the SCP algorithm. This approach allows one to retain all the theoretical guarantees of GuSTO while simultaneously taking advantage of the fast execution of the neural network and reducing the time and number of iterations required for GuSTO to converge. The result is a faster and theoretically guaranteed trajectory optimization algorithm.
Fichier principal
Vignette du fichier
Banerjee.Lew.Bonalli.ea.AeroConf20.pdf (8.29 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03467612 , version 1 (06-12-2021)

Identifiants

Citer

Somrita Banerjee, Thomas Lew, Riccardo Bonalli, Abdulaziz Alfaadhel, Ibrahim Abdulaziz Alomar, et al.. Learning-based Warm-Starting for Fast Sequential Convex Programming and Trajectory Optimization. 2020 IEEE Aerospace Conference, Mar 2020, Big Sky, MT, United States. ⟨10.1109/AERO47225.2020.9172293⟩. ⟨hal-03467612⟩

Collections

TDS-MACS
22 Consultations
114 Téléchargements

Altmetric

Partager

More