Eager Functions as Processes (long version) - Archive ouverte HAL
Article Dans Une Revue Theoretical Computer Science Année : 2022

Eager Functions as Processes (long version)

Résumé

We study Milner's encoding of the call-by-value λ-calculus into the π-calculus. We show that, by tuning the encoding to two subcalculi of the π-calculus (Internal π and Asynchronous Local π), the equivalence on λ-terms induced by the encoding coincides with Lassen's eager normalform bisimilarity, extended to handle η-equality. As behavioural equivalence in the π-calculus we consider contextual equivalence and barbed congruence. We also extend the results to preorders. A crucial technical ingredient in the proofs is the recently-introduced technique of unique solutions of equations, further developed in this paper. In this respect, the paper also intends to be an extended case study on the applicability and expressiveness of the technique.
Fichier principal
Vignette du fichier
efp.pdf (539.08 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03466150 , version 1 (04-12-2021)
hal-03466150 , version 2 (10-12-2021)
hal-03466150 , version 3 (04-02-2022)

Identifiants

Citer

Adrien Durier, Daniel Hirschkoff, Davide Sangiorgi. Eager Functions as Processes (long version). Theoretical Computer Science, In press, ⟨10.1016/j.tcs.2022.01.043⟩. ⟨hal-03466150v3⟩
94 Consultations
95 Téléchargements

Altmetric

Partager

More