Évaluation statistique efficace de la robustesse de classifieurs - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

Évaluation statistique efficace de la robustesse de classifieurs

Résumé

Nous proposons de quantifier la robustesse d'un classifieur aux incertitudes d'entrée avec une simulation stochastique. L'évaluation de la robustesse est présentée comme un test d'hypothèse : le classifieur est considéré comme localement robuste si la probabilité de défaillance estimée est inférieure à un niveau critique. La procédure est basée sur une simulation d'Importance Splitting générant des échantillons d'événements rares. Nous dérivons des garanties théoriques non-asymptotiques par rapport à la taille de l'échantillon. Des expériences portant sur des classifieurs à grande échelle mettent en évidence l'efficacité de notre méthode.
Fichier principal
Vignette du fichier
Last_Particle_CAID2021_final.pdf (410 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03462156 , version 1 (01-12-2021)

Identifiants

  • HAL Id : hal-03462156 , version 1

Citer

Karim Tit, Teddy Furon, Mathias Rousset, Louis-Marie Traonouez. Évaluation statistique efficace de la robustesse de classifieurs. CAID 2021 - Conference on Artificial Intelligence for Defense, DGA, DGNUM, Ministère des Armées, Nov 2021, Rennes, France. pp.1-11. ⟨hal-03462156⟩
172 Consultations
345 Téléchargements

Partager

More