Trpm5 channels encode bistability of spinal motoneurons and ensure motor control of hindlimbs in mice
Résumé
Bistable motoneurons of the spinal cord exhibit warmth-activated plateau potential driven by Na + and triggered by a brief excitation. The thermoregulating molecular mechanisms of bistability and their role in motor functions remain unknown. Here, we identify thermosensitive Na +-permeable Trpm5 channels as the main molecular players for bistability in mouse motoneurons. Pharmacological, genetic or computational inhibition of Trpm5 occlude bistable-related properties (slow afterdepolarization, windup, plateau potentials) and reduce spinal locomotor outputs while central pattern generators for locomotion operate normally. At cellular level, Trpm5 is activated by a ryanodine-mediated Ca 2+ release and turned off by Ca 2+ reuptake through the sarco/endoplasmic reticulum Ca 2+-ATPase (SERCA) pump. Mice in which Trpm5 is genetically silenced in most lumbar motoneurons develop hindlimb paresis and show difficulties in executing high-demanding locomotor tasks. Overall, by encoding bistability in motoneurons, Trpm5 appears indispensable for producing a postural tone in hindlimbs and amplifying the locomotor output.
Origine | Fichiers éditeurs autorisés sur une archive ouverte |
---|