Face Detection in Painting Using Deep Convolutional Neural Networks
Résumé
The artistic style of paintings constitutes an important information about the painter’s technique. It can provide a rich description of this technique using image processing tools, and particularly using image features. In this paper, we investigate automatic face detection in the Tenebrism style, a particular painting style that is characterized by the use of extreme contrast between the light and dark. We show that convolutional neural network along with an adapted learning base makes it possible to detect faces with a maximum accuracy in this style. This result is particularly interesting since it can be the basis of an illuminant study in the Tenebrism style.