Stochastic modulational instability in the nonlinear Schr\"odinger equation with colored random dispersion - Archive ouverte HAL
Article Dans Une Revue Physical Review A Année : 2022

Stochastic modulational instability in the nonlinear Schr\"odinger equation with colored random dispersion

Résumé

We study modulational instability (MI) in optical fibers with random group-velocity dispersion (GVD). We consider Gaussian and dichotomous colored stochastic processes. We resort to different analytical methods (namely, the cumulant expansion and the functional approach) and assess their reliability in estimating the MI gain of stochastic origin. If the power spectral density (PSD) of the GVD fluctuations is centered at null wavenumber, we obtain low-frequency MI sidelobes which converge to those given by a white noise perturbation when the correlation length tends to 0. If instead the stochastic processes are modulated in space, one or more MI sidelobe pairs corresponding to the well-known parametric resonance (PR) condition can be found. A transition from small and broad sidelobes to peaks nearly indistinguishable from PR-MI is predicted, in the limit of large perturbation amplitudes and correlation lengths of the random process. We find that the cumulant expansion provides good analytical estimates for small PSD values and small correlation lengths, when the MI gain is very small. The functional approach is rigorous only for the dichotomous processes, but allows us to model a wider range of parameters and to predict the existence of MI sidelobes comparable to those observed in homogeneous fibers of anomalous GVD
Fichier principal
Vignette du fichier
2111.13691.pdf (487.79 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03456422 , version 1 (30-11-2021)

Identifiants

Citer

Andrea Armaroli, Guillaume Dujardin, Alexandre Kudlinski, Arnaud Mussot, Stefano Trillo, et al.. Stochastic modulational instability in the nonlinear Schr\"odinger equation with colored random dispersion. Physical Review A, 2022, ⟨10.1103/PhysRevA.105.013511⟩. ⟨hal-03456422⟩
93 Consultations
69 Téléchargements

Altmetric

Partager

More