Precocious Expression of the Glide/Gcm Glial-Promoting Factor in Drosophila Induces Neurogenesis
Abstract
Abstract Neurons and glial cells depend on similar developmental pathways and often originate from common precursors; however, the differentiation of one or the other cell type depends on the activation of cell-specific pathways. In Drosophila, the differentiation of glial cells depends on a transcription factor, Glide/Gcm. This glial-promoting factor is both necessary and sufficient to induce the central and peripheral glial fates at the expense of the neuronal fate. In a screen for mutations affecting the adult peripheral nervous system, we have found a dominant mutation inducing supernumerary sensory organs. Surprisingly, this mutation is allelic to glide/gcm and induces precocious glide/gcm expression, which, in turn, activates the proneural genes. As a consequence, sensory organs are induced. Thus, temporal misregulation of the Glide/Gcm glial-promoting factor reveals a novel potential for this cell fate determinant. At the molecular level, this implies unpredicted features of the glide/gcm pathway. These findings also emphasize the requirement for both spatial and temporal glide/gcm regulation to achieve proper cell specification within the nervous system.