Typicality and entropy of processes on infinite trees - Archive ouverte HAL
Article Dans Une Revue Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques Année : 2022

Typicality and entropy of processes on infinite trees

Résumé

Consider a uniformly sampled random $d$-regular graph on $n$ vertices. If $d$ is fixed and $n$ goes to $\infty$ then we can relate typical (large probability) properties of such random graph to a family of invariant random processes (called "typical" processes) on the infinite $d$-regular tree $T_d$. This correspondence between ergodic theory on $T_d$ and random regular graphs is already proven to be fruitful in both directions. This paper continues the investigation of typical processes with a special emphasis on entropy. We study a natural notion of micro-state entropy for invariant processes on $T_d$. It serves as a quantitative refinement of the notion of typicality and is tightly connected to the asymptotic free energy in statistical physics. Using entropy inequalities, we provide new sufficient conditions for typicality for edge Markov processes. We also extend these notions and results to processes on unimodular Galton-Watson random trees.
Fichier principal
Vignette du fichier
2102.02653.pdf (372.85 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03447803 , version 1 (23-05-2024)

Identifiants

Citer

Ágnes Backhausz, Charles Bordenave, Balázs Szegedy. Typicality and entropy of processes on infinite trees. Annales de l'Institut Henri Poincaré (B) Probabilités et Statistiques, 2022, 58 (4), pp.1959-1980. ⟨10.1214/21-AIHP1233⟩. ⟨hal-03447803⟩
90 Consultations
22 Téléchargements

Altmetric

Partager

More