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TYPICALITY AND ENTROPY OF PROCESSES ON INFINITE TREES

ÁGNES BACKHAUSZ1,2, CHARLES BORDENAVE3, AND BALÁZS SZEGEDY2

Abstract. Consider a uniformly sampled random d-regular graph on n vertices. If d is fixed and n goes
to ∞ then we can relate typical (large probability) properties of such random graph to a family of invariant
random processes (called "typical" processes) on the infinite d-regular tree Td. This correspondence between
ergodic theory on Td and random regular graphs is already proven to be fruitful in both directions. This
paper continues the investigation of typical processes with a special emphasis on entropy. We study a
natural notion of micro-state entropy for invariant processes on Td. It serves as a quantitative refinement of
the notion of typicality and is tightly connected to the asymptotic free energy in statistical physics. Using
entropy inequalities, we provide new sufficient conditions for typicality for edge Markov processes. We also
extend these notions and results to processes on unimodular Galton-Watson random trees.

Abstract. [Fr] On considère un graphe d-régulier aléatoire avec n sommets uniformément distribué. Si d
est fixé et n diverge, nous pouvous alors relié les propriétés typiques (de grande probabilité) d’un tel graphe
aléatoire avec une famille de processus aléatoires invariants (dénommés processus "typiques") sur l’arbre
d-régulier infini Td. Cette correspondance entre théorie ergodique sur Td et graphes réguliers aléatoires
s’est déjà révélée fructueuse dans les deux directions. Ce papier poursuit l’investigation des processus
typiques avec un accent mis sur l’entropie. Nous y étudions une notion naturelle d’entropie micro-état
pour les processus invariant sur Td. Elle sert de rafinement quantitatif à la notion de typicalité et elle est
intimement reliée à l’energie libre asymptotique en physique statistique. Au moyen d’inégalités entropiques,
nous démontrons des nouvelles conditions suffisantes de typicalité pour des processus markovien sur les arêtes
de l’arbre. Nous étendons aussi ces notions et résultats à des processus sur des arbres de Galton-Watson
unimodulaires.

1. Introduction

1.1. Typical processes and sofic entropy. Random d-regular graphs have been extensively studied over
the past 50 years [10, 21, 28, 32]. Sophisticated methods from probability theory, combinatorics and statistical
physics have been successfully used to uncover many of their properties such as independence ratio, the
density of a maximal cut or its spectral gap [18, 31, 21]. The recently emerging theory of graph limits
[8, 24, 22, 26] gives a new, limiting point of views on the subject. It turns out that many of the crucial
properties of random d-regular graphs for d fixed and n going to infinity can also be studied in the framework
of ergodic theory on the infinite d-regular tree Td [2]. An illustration of the power of this method is the proof
of the Gaussianity of the almost eigenvectors of random d-regular graphs [3, 11]. The proof is a combination
of ergodic theory on Td with information theoretic methods.

In this paper we are interested in a question which is also related to the limit of random regular graphs,
namely, to the family of typical processes on Td introduced in [2]. These objects arise as the local limits
of vertex-colored random d-regular graphs (see formal definition below). These typical processes contain
useful information on the structure of d-regular graphs. For example, the classical fact from [9] that the
independence ratio is separated from 1/2 is equivalent to the fact that the alternating coloring of the infinite
d-regular tree is not typical. Several necessary conditions have been formulated for typical processes in
the last years. Some of them are about the covariance structure, others are entropy inequalities [4, 5, 15].
However, general sufficient conditions for a process to be typical are less common.

In this paper we obtain sufficient conditions for the typicality of processes on Td, by studying a new
micro-state entropy. This entropy measures in some sense the number of finite approximations of a process
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on a random instance of a large d-regular graph. This entropy is tightly connected to Bowen’s sofic entropy
in measured group theory, see [13].

Our approach has another connection to the convergence of random graphs. While graph limit theory
shows great promise in a variety of questions related to random d-regular graphs, it also revealed an intriguing
open problem. It is believed that for fix d and n→ ∞ we have that a random d-regular graph on n vertices
is convergent (in probability) in the local-global sense of [24] and also right-convergent in the sense of [22],
this last notion of convergence relies on a deep statistical physics theory, see the monograph [27]. These
general conjectures are a common strengthening of a large variety of conjectures many of which are already
proven. For example the convergence of the independence ratio is proven in [6, 17] and the convergence of
asymptotic free energies of a large class of statistical physics models on random d-regular graphs in [29, 14].
In this paper, we introduce an upper and a lower version of the micro-state entropies. Equality of these
entropies imply the convergence of random regular graphs. For a family of processes we can establish this
equality. This will lead to the sufficient conditions mentioned above, and this shows that our results might
lead to a deep understanding of the structure of random regular graphs.

1.2. Definitions. We now formalize the main definitions. Let d ≥ 3 be an integer and Td the infinite d-
regular tree (all vertices have d neighbors). Let M be a finite set. A process X on Td is a random variable
on MTd . This process (or its law) is invariant if the law of X is invariant by all automorphisms of the tree
Td. We denote by Id(M) the set of invariant probability measures on MTd .

We now define the Benjamini-Schramm topology. A pair (G, f) formed by a graph G = (V,E) and a map
f : V → M will be called a colored graph with color set M . A rooted colored graph is a triple (G, f, o)
formed by a connected colored graph (G, f) and a distinguished vertex o of G, called the root. Two rooted
colored graphs (G, f, o) and (G′, f ′, o′) are isomorphic if there is an isomorphism of G and G′ which preserves
the colors and the roots. An equivalence class of rooted colored graphs is called an unlabeled rooted colored
graph in combinatorics.

Unlabeled rooted graphs give the proper setup for defining a meaningful notion of convergence. It is
however more convenient to work with rooted labeled graphs instead of unlabeled rooted graphs. To this
end, we now define a randomized canonical graph in each equivalence class. We define the set of finite integer
sequences as

N
f = ∪k≥0N

k (1.1)

where N
0 = {o} and N = {1, 2, . . . , } by convention. The tree Td can be classically built on a subset of Nf as

follows. The root of the tree is o, its d-neighbors of o are V1 = {1, . . . , d} ⊂ N, the neighbors of i ∈ V1 are o
and {(i, 1), . . . , (i, d−1)} ∈ N

2 and so on. More generally, if (G, o) is a rooted graph, the breadth-first search
tree started at the root o, where ties between vertices are broken uniformly at random defines a random
graph (G′, o) on a subset of Nf whose law depends only the equivalence class of (G, o): a vertex at distance
k from the root receives a label in N

k, if (i1, . . . , ik−1) is the label of its parent in the search tree, it has the
label (i1, . . . , ik−1, j) if it the j-th offspring of its parent in the random ordering. We call this random rooted
graph, the randomly labeled rooted graph associated to (G, o). Conversely, we will say that a random labeled
colored graph (G, f, o) on a subset of Nf is randomly labeled if its law is equal to the law of the randomly
labeled rooted colored graph associated to its unlabeled rooted colored graph. By definition if X ∈ Id(M)
then (Td, X, o) is randomly labeled.

Recall that a graph is locally finite if all its vertices have a finite number of neighbors. We denote by
G• (respectively G•

M ) the set of locally finite graphs (respectively locally finite colored graphs on the color
set M) on the vertex set N

f rooted at o which are admissible in the sense that they are realizable as a
breadth-first search labeling of a locally finite graph. The sets G• and G•

M are complete separable metric
spaces when equipped with the distance d(g, g′) =

∑
r≥0 2

−r
1(g)r 6=(g′)r where 1 is the indicator function and

gr is the restriction of g to the vertices at distance at most r from the root. We denote by P(G•
M ) the set

of probability measures on G•
M . We equip P(G•

M ) with a distance, also denoted by d, which generates the
weak topology on P(G•

M ) (for example, the Lévy-Prohorov distance).
If (G, f) is a locally finite colored graph and v is a vertex of G then we denote by distrG,v(f) the law in

P(G•
M ) of the randomly labeled rooted graph ((G, f)(v), v) where (G, f)(v) is the restriction of (G, f) to the

connected component of G containing v. The law distrG,v in P(G•) is defined similarly for a graph G and
a vertex v. Finally, if G is finite with vertex set V , we may define the probability measures in P(G•) and
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P(G•
M ):

distrG =
1

|V |
∑

v∈V

distrG,v and distrG(f) =
1

|V |
∑

v∈V

distrG,v(f).

For integers n ≥ d + 1 with nd even, the set Gn(d) of simple d-regular graphs on the vertex set [n] =
{1, . . . , n} is not empty. For each integer n ≥ d+ 1 with nd even, let Gn be a uniformly distributed random
graph on Gn(d). Almost-surely, the probability distribution distrGn

converges as n goes to infinity to the
Dirac mass at Td rooted at o (it is a consequence of the fact that the number of cycles of length k in Gn is
O(1) for any fixed k, see [10]). It can further be checked that, a.s. if µ is an accumulation point of distrGn

(fn)
for some sequence of colorings fn ∈Mn, then µ ∈ Id(M). This motivates the following definition introduced
in [2].

Definition 1.1 (Typical process). A measure µ ∈ Id(M) is weakly typical if

lim
ǫ→0

lim sup
n→∞

P(∃f ∈Mn : d(distrGn
(f), µ) ≤ ǫ) = 1.

It is strongly typical if
lim
ǫ→0

lim
n→∞

P(∃f ∈Mn : d(distrGn
(f), µ) ≤ ǫ) = 1.

Note that it is apparent from the definition that being typical does not depend on the choice of the
distance d which generates the weak topology. We note also that the definition in [2] is slightly different but
it turns out to be equivalent by using some measure concentration phenomena (see [3, Section 5]).

We may also define a notion of micro-state entropy of µ ∈ Id(M) as follows. For µ ∈ Id(M) and r ≥ 0,
the probability measure µr is defined as the restriction of µ to the vertices at distance at most r from the
root. Similarly, for f ∈ Mn, we define distrG(f)r as the restriction of the distribution distrG(f) to the set
of vertices at distance at most r from the root. For any ǫ > 0, if G ∈ Gn(d), we define

FG(µ, r, ǫ) = {f ∈Mn : d(distrG(f)r, µr) ≤ ǫ}. (1.2)

This is the set of coloring functions f on G which are ǫ close to µr in the Benjamini-Schramm sense. Let
Gn be a uniformly distributed random graph on Gn(d) with n ≥ d − 1 and nd even. Roughly speaking the
sofic entropy of µ is a limit of

HGn
(µ, r, ǫ) =

1

n
log |FGn

(µ, r, ǫ)|, (1.3)

in n → ∞ and then in ǫ → 0 and r → ∞. Notice that random regular graphs could be replaced by other
locally tree-like graph sequences, but as the expectation of |FGn

(µ, r, ǫ)| is easier to compute in our case, we
use the definition based on random regular graphs. Since HGn

(µ, r, ǫ) is a random variable in {−∞}∪ [0,∞)
some care is needed. More formally, we fix 0 < α < 1 and consider the following median value of HGn

(µ, r, ǫ),

hn(µ, r, ǫ, α) = sup {h ∈ {−∞} ∪ [0,∞) : P (HGn
(µ, r, ǫ) ≥ h) ≥ α} .

Since hn is non-decreasing in ǫ, we may define the upper and lower entropies of µ as

h̄(µ, r, α) = lim
ǫ→0

lim sup
n→∞

hn(µ, r, ǫ, α) and h(µ, r, α) = lim
ǫ→0

lim inf
n→∞

hn(µ, r, ǫ, α).

These entropies are extended real numbers in {−∞}∪ [0,∞). This entropy can be interpreted as a version
of Bowen’s sofic entropy, see the survey [13].

The sofic entropies h̄(µ, r, α) and h(µ, r, α) do not depend on α ∈ (0, 1). Note that they do not depend
neither on the choice of the distance d (in the sense that if two distances are topologically equivalent, the
corresponding quantities h̄(µ, r, α) and h(µ, r, α) are equal). We shall prove the following.

Lemma 1.2. Let µ ∈ Id(M) and r ≥ 0. The function α 7→ (h̄(µ, r, α), h(µ, r, α)) is constant on (0, 1).

By Lemma 1.2, we may consider the common value of the entropies: for all α ∈ (0, 1),

h̄(µ, r) = h̄(µ, r, α) and h(µ, r) = h(µ, r, α).

By construction, h̄(µ, r) and h(µ, r) are the growth rates of the number of coloring of a random d-regular
graph whose r-neighborhood is close to µr. Finally, since h̄(µ, r) and h(µ, r) are non-increasing in r, we may
define the upper and lower sofic entropies as

h̄(µ) = lim
r→∞

h̄(µ, r) and h(µ) = lim
r→∞

h(µ, r).
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Taking the limit as α→ 1, for h ≥ 0, the inequality h̄(µ) ≥ h is equivalent to the existence of a vanishing
sequence (ǫn) and such that

lim sup
n→∞

P(HGn
(µ, 1/ǫn, ǫn) ≥ (h− ǫn)+) = 1,

where (x)+ = x∨ 0, and similarly for h(µ). Since for ν, µ ∈ P(G•
M ), d(νr, µr) converges to d(ν, µ) as r → ∞,

the sofic entropy is thus closely related to the typicality:

Lemma 1.3. Let µ ∈ Id(M). We have h̄(µ) ≥ 0 (resp. h(µ) ≥ 0) if and only if µ is weakly (resp. strongly)
typical.

This work is notably motivated the following conjecture which is connected to the notion of right conver-
gence, see [22] and Subsection 1.6 below.

Conjecture 1.4. For all µ ∈ Id(M), we have h(µ) = h̄(µ). In particular, µ is weakly typical if and only if
it is strongly typical.

In this work, we will compute the entropy h(µ) = h̄(µ) for a large class of invariant measures µ ∈ Id(M).
This class is a class of processes where a second moment method can be applied. In a subsequent work,
we will use more advanced statistical physics methods to refine our criterion. This conjecture might also
be related to the Guerra’s interpolation method [23] developed in the context of random graphs notably in
[20, 6, 22, 29, 14, 25].

1.3. Annealed entropy. If r ≥ 0 is an integer and S is a subset of Td, we define Br(S) the subset of
vertices of Td at distance at most r from a vertex in S. For ease of notation, for r ≥ 1, we define Sr = Br(o)
as the ball of radius r around the root of Td and Er = Br−1({o, 1}) is the set of vertices at distance r − 1
from the edge {o, 1} of Td.

If X is an invariant process with law µ ∈ Id(M) and r ≥ 1 integer, we set

Σr(X) = Σr(µ) = H(XSr
)− d

2
H(XEr

), (1.4)

where XS is the restriction of X to the subset S ⊂ Td and H is the usual Shannon entropy: if Y is a random
variable taking value a finite set F , then

H(Y ) = −
∑

x∈F

P(Y = x) lnP(Y = x).

By abusing notation, we denote entropy in the same way for both random variables and their distributions.
It follows from [3, 12] (see Subsection 2.2 below for details) that Σr(µ) is non-increasing in r. We may thus
define

Σ(µ) = lim
r→∞

Σr(µ).

Note that the law of XSr
is µr and that the law of XEr

is a marginal of µr. The quantities Σr(µ) and
Σ(µ) will be called the annealed entropy of µr and µ, the reason will be clear in the forthcoming Subsection
2.3. The following first moment bound is essentially contained in [2, 12].

Theorem 1.5. For any µ ∈ Id(M) and integer r ≥ 1, we have

h̄(µ, r) ≤ Σr(µ) and h̄(µ) ≤ Σ(µ).

As a corollary, we recover the "star-edge inequality" of [2, 3] which is a necessary condition of typicality:
if µ is weakly typical then by Lemma 1.3, h̄(µ) ≥ 0 and thus, by Theorem 1.5, Σ(µ) ≥ 0.

Corollary 1.6 ([2, 3]). If µ ∈ Id(M) is a weakly typical process then Σ(µ) ≥ 0.

The main result of this paper is a matching lower bound for a large class of invariant processes. To this
end, we first recall the notion of coupling restricted to our setting. Let M1 and M2 be two finite sets, X1

and X2 be two random variables on MTd

1 and MTd

2 with respective laws µ1 and µ2. A coupling of µ1 and µ2

is a distribution ν on (M1 ×M2)
Td such that if Y = (Y1, Y2) has law ν, Yi has law µi for i = 1, 2. If Xi is

an invariant process for i = 1, 2, we say that ν or Y is an invariant coupling if ν ∈ Id(M1 ×M2).
4



Theorem 1.7. Let µ ∈ Id(M). For any integer r ≥ 1, if all invariant couplings ν of µ and µ satisfy
Σr(ν) ≤ 2Σr(µ) then h(µ, r) = h̄(µ, r) = Σr(µ). In particular, if the above condition holds for an increasing
sequence of integers (rk)k≥1 then h(µ) = h̄(µ) = Σ(µ).

We note that the bound Σr(ν) ≤ 2Σr(µ) is attained for the independent coupling Y = (X1, X2) with Xi

independent with law µ. Note also that if ν is the trivial coupling of µ and µ, that is Y = (X,X) with X
with law µ, we find Σr(ν) = Σr(µ). Hence, under the condition of Theorem 1.7, we have Σr(µ) ≤ 2Σr(µ) or
equivalently Σr(µ) ≥ 0. As a corollary, by Lemma 1.3, we thus obtain the following sufficient condition for
typicality.

Corollary 1.8. Let µ ∈ Id(M) and (rk)k≥1 an increasing sequence of integers be such that for all invariant
couplings ν of µ and µ and all k ≥ 1 we have Σrk(ν) ≤ 2Σrk(µ). Then µ is strongly typical.

1.4. Edge-Markov processes. There is a specific class of processes in Id(M) for which it is possible to
improve on Theorem 1.7, the edge-Markov processes defined as follows. As above, for integer r ≥ 0, Br(S)
is the r-neighborhood of a subset S in Td. For r ≥ 1, recall that Sr = Br(o) and Er = Br−1({o, 1}).
Definition 1.9 (Edge-Markov process). A probability measure in MTd is edge-Markov if conditioned on the
value at an edge, the processes on the left and right subtrees of that edge are independent.

More generally, for integer r ≥ 1, a probability measure on MTd is r-Markov if conditioned on the value at
Br−1(e), the (r−1)-neighborhood of an edge e, the processes on the left and right subtrees of e are independent
(for r = 1 we recover the edge-Markov process).

Let Id,r(M) denote the set of probability measures on MSr that are invariant by automorphisms of Sr
and whose restriction to Er is invariant by switching the two sides of the edge {o, 1}. If µ ∈ Id(M), then,
µr, its restriction to Sr, is in Id,r(M). Conversely, the following lemma is easy to see.

Lemma 1.10. Let r ≥ 1 be an integer and p ∈ Id,r(M). Then there is a unique r-Markov process µ(p) ∈
Id(M) such that the marginal of µ(p) on Sr is equal to p.

If p ∈ Id,r(M), we define Σ(p) = Σr(µ(p)) = H(XSr
) − (d/2)H(XEr

) as in Equation (1.4), where X
has law p. As above, if p1 and p2 are probability measures on MSr

1 and MSr

2 , a coupling of p1 and p2 is a
probability measure on MSr

1 ×MSr

2 whose marginals are p1 and p2. The following theorem is a strengthening
of Theorem 1.7 for egde-Markov processes.

Theorem 1.11. Let r ≥ 1 be an integer and p ∈ Id,r(M). If for all couplings q ∈ Id,r(M2) of p and p, we
have Σ(q) ≤ 2Σ(p) then h(µ(p)) = h̄(µ(p)) = Σ(p) and µ(p) is strongly typical.

Theorem 1.11 provides an easy to check criteria for typicality for edge Markov processes. In the course
of the proof, we will need an important maximizing property satisfied by edge Markov processes (a closely
related characterization can be found in [12, Theorem 1.3] and [3, Lemma 10.1]).

Lemma 1.12. Let X ∈ Id(M) and r ≥ 1. We have

Σr+1(X) ≤ Σr(X)

with equality if and only if XSr+1
is a r-Markov process on Sr+1.

Notice that we also get that Σ(X) = Σr(X) holds for r-Markov processes.

1.5. Vertex-Markov processes. There is a subclass of edge-Markov processes for which the annealed
entropy takes a particularly simple form.

Definition 1.13 (Vertex-Markov process). Let T be a tree, a probability measure in MT is vertex-Markov
if conditioned on the value at a vertex, the processes on the pending subtrees of that vertex are independent.

Let Ie(M) denote the set of probability measures on ME1 that are invariant by switching the two sides
of the edge {o, 1}. If µ ∈ Id(µ) then its restriction to E1 is in Ie(M). Conversely, if p ∈ Ie(M), there exists
a unique vertex-Markov process whose restriction to E1 is p. We denote the law of this process by µ(p). If
X ∈ Id(M), we define

Σe(X) =
d

2
H(XE1

)− (d− 1)H(Xo).

If p ∈ Ie(M), we set Σ(p) = Σe(µ(p)). Vertex-Markov processes satisfy the following extremal property.
5



Lemma 1.14. If X ∈ Id(M) then
Σ1(X) ≤ Σe(X),

with equality if and only if XS1
is a vertex-Markov process on S1.

Combined with Theorem 1.11, the above lemma implies the following corollary.

Theorem 1.15. Let p ∈ Ie(M). If for all couplings q ∈ Ie(M2) of p and p we have Σ(q) ≤ 2Σ(p), then
h(µ(p)) = h̄(µ(p)) = Σ(p) and µ(p) is strongly typical.

Proof. Let p′ = µ(p)1 ∈ Id,1(M) be the law of µ(p) restricted to S1. Let q′ be an invariant coupling of
p′ and p′ and let q be its restriction to E1. By construction q ∈ Ie(M2). Moreover, by Lemma 1.14,
Σ(q′) ≤ Σ1(µ(q

′)) = Σe(µ(q)) = Σ(q). It follows that Theorem 1.15 is a consequence of Theorem 1.11
applied to r = 1 and p′ = µ(p)1. �

1.6. Application to factor graphs and combinatorial optimization. In this paragraph, we discuss a
basic connection between asymptotic free energy of factor graphs and sofic entropy. This may serve an extra
motivation for studying the sofic entropy.

Let M be a finite set, r ≥ 1 be an integer and let ϕ be a function on the set of rooted unlabeled M -colored
graphs of radius r taking value in (0,∞). If G ∈ Gn(d),

ZG =
∑

f∈Mn

n∏

v=1

ϕ((G, f, v)r),

where (G, f, v)r is the rooted colored graph associated to the ball of radius r around v in G. We set

ψ = lnϕ.

The asymptotic free energy is defined as the limit of (1/n) lnZGn
where Gn is a uniformly sampled graph

in Gn(d) (provided that the limit exists). By standard concentration inequality (see argument in Theorem
2.1), it is easy to check that if Gn is uniformly sampled in Gn(d), then, in probability, as n goes to infinity,

1

n
lnZGn

− E
1

n
lnZGn

→ 0. (1.5)

It is straightforward to express the limits of the expected free energy in terms of the entropy. If p ∈
Id,r(M), we set for ease of notation h(p) = h(µ(p), r) and similarly for h̄(p) (there are the upper and lower
growth rates of the number of colorings of Gn whose r-neighborhood is close to p). In the statement below,
we use the notation 〈p, ψ〉 = Eψ(X) where X has law p.

Lemma 1.16. For integer r ≥ 1 and ψ as above, if Gn is uniformly distributed on Gn(d) (with nd even and
n ≥ d+ 1), we have

sup
p∈Id,r(M)

(h(p) + 〈p, ψ〉) ≤ lim inf
n→∞

E
1

n
lnZGn

≤ lim sup
n→∞

E
1

n
lnZGn

≤ sup
p∈Id,r(M)

(
h̄(p) + 〈p, ψ〉

)
.

In particular, if Conjecture 1.4 holds true, then it would automatically imply the convergence of the
expected free energy for all functions ψ. Note also that Theorem 1.7 can be used to obtain a lower bound
expected free energy while Theorem 1.5 can be used to get an upper bound. With proper technical conditions,
it is possible to extend Lemma 1.16 to some hard-constrained models, that is to some functions ϕ = eψ which
take value in [0,∞). For simplicity, we will however not discuss in details this possibility here.

In the same vein, in combinatorial optimization problems, we are often interested in the computation of
a graph functional of the form:

LG = max
f∈Mn

n∑

v=1

ψ((G, f, v)r),

with r ≥ 1 and ψ as above. Again, it is easy to check that if Gn is uniformly sampled in Gn(d), we have, in
probability,

LGn

n
− ELGn

n
→ 0.

The following statement is a corollary of Lemma 1.16. It shows that typical processes are intimately connected
to the computation of limits of ELGn

/n.
6



Lemma 1.17. For integer r ≥ 1 and ψ as above, if Gn is uniformly distributed on Gn(d) (with nd even and
n ≥ d+ 1), we have

sup
p∈Id,r(M):h(p)≥0

〈p, ψ〉 ≤ lim inf
n→∞

ELGn

n
≤ lim sup

n→∞

ELGn

n
≤ sup

p∈Id,r(M):h̄(p)≥0

〈p, ψ〉.

Again, we observe that Theorem 1.7 can be used to obtain a lower bound on ELGn
/n and Theorem 1.5

an upper bound.

Remark 1.18. We conclude this paragraph by mentioning that, for r = 1, there is a simplification of Lemma
1.16 and Lemma 1.17 for functions ψ of the form

ψ((G, f, v)1) = ψ0(f(v)) +
∑

u:u∼v

ψ1(f(v), f(u))

where the supremum in Lemma 1.16 and Lemma 1.17 is taken over p ∈ Ie(M) instead of p ∈ Id,1(M) and
the entropic term is given by h(p) = suph(q) where the supremum is over all q ∈ Id,1(M) whose restriction
to E1 is p, and similarly for h̄(p). This can be useful because it reduces the dimension of the underlying
optimization problem. In that case, Theorem 1.15 can be used to give lower bounds.

Organization of the paper. The remainder of this text is organized as follows. In Section 2, we will
establish the key properties of sofic and annealed entropies. In Section 3, we will prove the main results of
this paper. In the final Section 4, we will extend our framework and main results to invariant processes on
unimodular Galton-Watson trees.

2. Properties of sofic and annealed entropies

2.1. Concentration of entropy: proof of Lemma 1.2. Let Gn be a uniformly distributed random graph
on Gn(d) with n ≥ d−1 and nd even. Recall the definition of HGn

(µ, r, ǫ) in (1.3). The aim of this subsection
is to establish the following concentration result.

Theorem 2.1. Let r ≥ 0, µ ∈ Id(M), h ∈ {−∞} ∪ [0,∞). For all functions δ : (0,∞) → (0,∞] with
limǫ→0 δ(ǫ) = 0, we have the following: if for all ǫ > 0,

lim sup
n→∞

1

n
logP(HGn

(µ, r, ǫ) ≥ h) ≥ −δ(ǫ), (2.1)

then h(µ, r, α) ≥ h for all 0 < α < 1. Conversely, for all functions δ as above such that limǫ→0 ǫ
−2δ(ǫ) = 0:

if for all ǫ > 0,

lim sup
n→∞

1

n
logP(HGn

(µ, , r, ǫ) ≤ h) ≥ −δ(ǫ) (2.2)

then h̄(µ, r, α) ≤ h for all 0 < α < 1. Finally, the same claims hold with lim inf and h replacing lim sup and
h̄.

It is immediate to check that Lemma 1.2 is a corollary of Theorem 2.1. Beware of the asymmetry between
the lower and upper bound. We believe that it is a caveat of our proof. It is ultimately due to the fact that
HGn

(µ, r, ǫ) can be equal to −∞.
The proof of Theorem 2.1 makes a detour through a relaxation of the entropy. Fix µ ∈ Id(M) and r ≥ 0.

If G is in Gd(n), we define for β > 0,

ZG(β) =
∑

f∈Mn

e−nβd(distrG(f)r ,µr).

We start the proof of the proposition with a concentration inequality.

Lemma 2.2. Let Gn be uniformly distributed on Gn(d) with dn even and n ≥ d− 1. There exists a constant
C depending on (d, r) and a deterministic number sn(β) depending on (n, d, r, β) such that for any t > 0, we
have

P

(∣∣∣∣
1

n
lnZGn

(β) − sn(β)

∣∣∣∣ ≥ t

)
≤ C exp(−nt2/(Cβ)2).
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Proof. The proof follows a standard path. By classical contiguity results, it is enough to establish the claim
for the configuration model (see Bollobás [10, Section 2.4]). Recall that the configuration model is the graph
(with possible loops and multiple edges) obtained as follows. We attach to each vertex in [n], d half-edges.
We sample a matching m on the set ~E of nd half-edges uniformly at random (recall that a matching is an
involution without fixed point). Finally, we form a d-regular graph G = G(m) by creating an edge for each
pair of matched half-edges.

Let us say that two matchingsm,m′ differ by a switch if there exists (a, b, c, d) in ~E such that m(e) = m′(e)

for all e ∈ ~E\{a, b, c, d} and m(a) = b, m′(a) = c, m(c) = d, m′(b) = d. If m and m′ differ by a switch, we
claim that for any f ∈Mn,

d(distrG(m)(f)r, distrG(m′)(f)r) ≤ C0
4d(d− 1)r−1

n
=
θ

n
,

where C0 is the diameter of P(G•
M ) for the distance d. Indeed, we have distrG,v(f)r = distrG′,v′(f

′)r if
the rooted subgraphs (G, f, v)r and (G′, f ′, v′)r are isomorphic. Notably, distrG(m),v(f)r = distrG(m′),v(f)r
unless v is at distance at most r from an edge in the symmetric difference of G(m) and G(m′).

We deduce that

e−βθ ≤ ZG(m′)

ZG(m)
≤ eβθ

and ∣∣lnZG(m) − lnZG(m′)

∣∣ ≤ βθ.

From [32, Theorem 2.19], if m is a uniformly sampled matching on ~E, we get

P

(∣∣∣∣
1

n
lnZG(m) − E

1

n
lnZG(m)

∣∣∣∣ ≥ t

)
≤ 2 exp(−nt2/(2dθ2β2)).

The conclusion follows with sn(β) = E
1
n
lnZG(m)(β). �

We are ready for the proof of Theorem 2.1.

Proof of Theorem 2.1. Recall the definition of FG(µ, r, ǫ) in (1.2). Since µ and r are fixed, we write simply
FG(ǫ) and set FG(ǫ) = |FG(ǫ)|. For any ǫ > 0, we have

lnZG(β) ≥ lnFG(ǫ)− nβǫ, (2.3)

where we have used that d(distrG(f)r, µr) ≤ ǫ for all f ∈ FG(ǫ). The other way around, if f /∈ FG(ǫ), we
have d(distrG(f)r, µr) ≥ ǫ. Hence,

lnZG(β) ≤ ln
(
|M |ne−nβǫ + FG(ǫ)

)
≤ ln 2 + (lnFG(ǫ)) ∨ (n(ln |M | − βǫ)). (2.4)

We may now prove the first claim of the theorem. Assume that (2.1) holds for some h ≥ 0 (if h = −∞,
there is nothing to prove). Let h1 < h and E = {HGn

(µ, r, ǫ) ≥ h}. On the event E , from (2.3), we have for
all β > 0,

1

n
lnZGn

(β) ≥ h− βǫ.

There exists βǫ such that, as ǫ→ 0, βǫǫ→ 0, βǫ → ∞ and β2
ǫ δ(ǫ) → 0. For this choice of β, (tǫ/βǫ)2 ≫ δ(ǫ)

for some tǫ → 0. It follows from Lemma 2.2 and (2.1) that for any h2, h3 such that h1 < h2 < h3 < h,
sn(βǫ) ≥ h3 for all n large enough (depending on ǫ), because the event E overlaps with the event from Lemma
2.2 when βǫ satisfies this condition. Let 0 < α < 1. Applying again Lemma 2.2, we deduce that the event
E2 = { 1

n
lnZGn

(βǫ) ≥ h2} has probability greater than α for all n large enough.
Now, there exists ηǫ such that, as ǫ → 0, ηǫ → 0 and βǫηǫ → ∞ (for example ηǫ = 1/

√
βǫ). We apply

(2.4) with ǫ = ηǫ. We get on the event E2, if ǫ is small enough,

HGn
(µ, r, ηǫ) ≥

1

n
lnZGn

(βǫ)−
1

n
ln 2 ≥ h2 −

1

n
ln 2.

The right-hand side is larger than h1 if n is large enough. We deduce that h̄(µ, r, α) ≥ h1, since h1 can be
arbitrarily close to h, the first claim follows.

The second claim is proven similarly. SinceHGn
(µ, r, ǫ) takes value in {−∞}∪[0,∞), we haveHGn

(µ, r, ǫ) ≤
−1 if and only if HGn

(µ, r, ǫ) = −∞. We may thus prove the second claim with h ≥ −1. Assume that (2.2)
8



holds for some δ(ǫ) which will be defined later on. We now set E = {HGn
(µ, r, ǫ) ≤ h}. On the event E , from

(2.4), we have for all β > 0,
1

n
lnZGn

(β) ≤ 1

n
ln 2 + h ∨ (ln |M | − βǫ).

If β ≥ βǫ = (ln |M |+ 1)/ǫ then we get, for all n large enough

1

n
lnZGn

(β) ≤ 1

n
ln 2 + h.

For our choice of δ(ǫ), we have δ(ǫ)β2
ǫ → 0 as ǫ → 0. Then, if h1 > h2 > h3 > h and ǫ is small enough, we

deduce by Lemma 2.2 that
sn(βǫ) ≤ h3

for all n large enough. We apply again Lemma 2.2 and deduce that the event E2 = { 1
n
lnZGn

(βǫ) ≤ h2} has
probability greater than α for all n large enough. Finally, from (2.3), we have on the event E2,

HGn
(µ, r, ǫ2) ≤ h2 + βǫǫ

2

The latter is less than h1 for all ǫ small enough. The second claim follows. Obviously, the same argument
works with lim inf and h(µ, r, α). �

2.2. Maximizers of the annealed entropy: proofs of Lemma 1.12 and Lemma 1.14. In this sub-
section, we prove Lemma 1.12 and Lemma 1.14. If X,Y are discrete random variables, we recall that the
relative entropy of X given Y is

H(X |Y ) = −
∑

x,y

P((X,Y ) = (x, y)) lnP(X = x|Y = y),

where P(A|B) = P(A∩B)/P(B) is the usual conditional probability (if P(B) = 0, P(A|B) takes an arbitrary
value). In other words, H(X |Y ) is the average over Y of the entropy of the conditional law of X given Y .
We will repeatedly use that

H(X,Y ) = H(Y ) +H(X |Y ) and H(X |(Y, Y ′)) ≤ H(X |Y ), (2.5)

with equality if and only if X conditioned on Y is independent of Y ′.
We start with the proof of Lemma 1.12.

Proof of Lemma 1.12. The following fact is useful. For a given integer r ≥ 1, we introduce the finite set
N = MSr−1 where as usual Sr−1 = Br−1(o). We consider the map Ψ from MTd to NTd which maps x to
Ψ(x) such that for v ∈ Td, Ψ(x)v is the restriction of x to Sr−1(v) (composed by a given isomorphism from
Sr−1(v) to Sr−1). If X is a process on Td then for all integers t ≥ 0, we have Σt+r(X) = Σt+1(Ψ(X)).
Moreover, if X is a r-Markov process, then Ψ(X) is an edge-Markov process.

As a byproduct, it is sufficient to prove Theorem 1.12 with r = 1: we should check that

Σ2(X) ≤ Σ1(X)

with equality if and only if XS2
is an edge Markov process. Note that the above inequality can be equivalently

written as

H(XS2
)−H(XS1

)− d

2
H(XE2

) +
d

2
H(XE1

) ≤ 0. (2.6)

To check that (2.6) holds, we need some extra notation. We denote by L = {2, . . . , d} the left side of E2

along E1 = {o, 1}. We also set Li = {(i, 1), . . . , (i, d− 1)} with i = 1, . . . , d. We have S1 = L ∪E1 and thus,
from (2.5)

H(S1) = H(E1) +H(L|E1),

where for ease of notation, for sets S, T , we write H(S) and H(S|T ) in place of H(XS) and H(XS |XT ).
Similarly, since E2 = S1 ∪ L1,

H(E2) = H(S1) +H(L1|S1) = H(E1) +H(L|E1) +H(L1|S1).

Finally, since S2 is the disjoint union of E2 and ∪di=2Li, we have,

H(S2) = H(E2) +H(∪di=2Li|E2).
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The last three identities imply that Equation (2.6) is equivalent to

H(∪di=2Li|E2)−
(
d

2
− 1

)
H(L1|S1)−

d

2
H(L|E1) ≤ 0. (2.7)

Using the invariance, we deduce from (2.5) that

H(∪di=2Li|E2) ≤ (d− 1)H(L2|E2)

with equality if and only if there is conditional independence of the XLi
’s given XE2

. Now, since E2 contains
S1, we get

H(L2|E2) ≤ H(L2|S1) = H(L1|S1),

with equality in case of conditional independence of XL2
and XE2\S1

given XS1
. It follows that the left-hand

side of (2.7) is upper bounded by
d

2
H(L1|S1)−

d

2
H(L|E1). (2.8)

From the invariance of X by switching the two sides of e, we get H(L|E1) = H(L1|E1) and thus (2.8) is
equal to

d

2
(H(L1|S1)−H(L1|E1)).

Using again (2.5), since E1 ⊂ S1, this last expression is always non-positive with equality if and only if
XL1

is conditionally independent of XS1
given Xe. This proves that (2.6) holds. By considering the case of

equality, it is then easy to check that it implies that XS2
is an edge Markov process. It concludes the proof

of Lemma 1.12. �

We now prove Lemma 1.14.

Proof of Lemma 1.14. Let X ∈ Id(M). From (2.5), with the notation used in the proof of Lemma 1.12, we
have

H(S1) = H(o) +H(S1|o) ≤ H(o) + dH(E1|o),
with equality if the variables (Xo, Xi)1≤i≤d conditioned on Xo are independent. Using (2.5) again, we get

H(S1) ≤ dH(E1)− (d− 1)H(o).

So finally, Σ1(X) = H(S1)− d
2H(E1) ≤ d

2H(E1)− (d− 1)H(o) = Σe(X) as requested. �

2.3. Combinatorial characterization of the annealed entropy. In this subsection, we give a combina-
torial interpretation of the annealed entropy Σr(µ). Recall that Gn(d) is the set of simple d-regular graphs
on the vertex set [n]. For µ ∈ Id(M), r ≥ 0 integer and ǫ > 0, we define the set of colored graphs whose
r-neighborhood is close to µr as

Gn(µ, r, ǫ) = {(G, f) : G ∈ Gn(d), f ∈Mn, d(distrG(f)r, µr) ≤ ǫ}
=

⊔

G∈Gn(d)

FG(µ, r, ǫ),

where ⊔ is the disjoint union and FG(µ, r, ǫ) was defined in (1.2). We then set

Σn(µ, r, ǫ) =
1

n
(log |Gn(µ, r, ǫ)| − log |Gn(d)|) =

1

n
logE|FGn

(µ, r, ǫ)|, (2.9)

where the expectation is with respect to the random graph Gn uniformly distributed on Gn(d). In comparison
with the definition of HGn

(µ, r, ǫ) in (1.3), Σn(µ, r, ǫ) appears as an annealed quantity in the sense that there
is an average over the randomness of Gn inside the logarithm. The following theorem asserts that Σn(µ, r, ǫ)
is close to Σr(µ) as n goes to infinity and ǫ goes to 0.

Theorem 2.3. Let µ ∈ Id(M) and r ≥ 1 integer. We have

lim
ǫ→0

lim inf
n→∞

Σn(µ, r, ǫ) = lim
ǫ→0

lim sup
n→∞

Σn(µ, r, ǫ) = Σr(µ).
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Proof. One side of this identity can be found in [3, Lemma 6.2]. We will however give a proof which relies
on [16] which is a generalization of [12] to colored graphs. This is interesting because it connects [12, 16] to
the entropic inequalities found in [2, 3]. First, a classical result of Bender and Canfield [7] implies that

1

n
log |Gn(d)| =

d

2
logn− s(d)− log(d!) + o(1), (2.10)

where s(d) = d/2 − (d/2) log d. On the other hand, Proposition 5 and Proposition 6 in Delgosha and
Anantharam [16] imply that

lim
ǫ→0

lim inf
n→∞

(
1

n
log |Gn(µ, r, ǫ)| −

d

2
logn

)
= lim

ǫ→0
lim sup
n→∞

(
1

n
log |Gn(µ, r, ǫ)| −

d

2
logn

)
= Jr(µ),

where Jr(µ) has an explicit formula that we now describe (the same formula appears in [12]).
We define T̃ •

r−1 as the set of unlabeled colored rooted (d − 1)-ary trees of depth r − 1. An element

g = (t, t′) ∈ Ẽr = T̃ •
r−1 × T̃ •

r−1 can be seen as an unlabeled coloring of Er rooted on the oriented edge (o, 1).

For g = (t, t′) in Ẽr and X a coloring of Td, we then define NX(g) as the number of neighbors v of the root
such that X restricted to Er(o, v) = Br−1({o, v}) is isomorphic to g: more precisely such that the restriction
of X to (d− 1)-ary tree rooted at o (respectively v) in Er(o, v)\{o, v} is isomorphic to t (respectively t′). By
construction ∑

g∈Ẽr

NX(g) = deg(o) = d. (2.11)

If X is a random coloring of Td with µ, we then define a probability measure on Ẽr by, for all g ∈ Ẽr:

πµ(g) =
E[NX(g)]

d
,

where the expectation is with respect to the randomness of X . We have

Jr(µ) = −s(d) +H(X̃Sr
)− d

2
H(πµ)−

∑

g∈Ẽr

E[log(NX(g)!)],

where X̃Sr
is the rooted unlabeled coloring associated to XSr

. As a sanity check, if M is a singleton, then
Jr(µ) = −s(d)− log(d!) and we retrieve Equation (2.10). Moreover, in view of Equation (2.10), the theorem
follows from the claim

Jr(µ) = −s(d)− log(d!) +H(XSr
)− d

2
H(XEr

). (2.12)

The expression (2.12) is obtained by putting random labeling on an unlabeled rooted coloring and following
the effect on the Shannon entropy. We first observe that, since X is invariant, for any g ∈ Ẽr, we have

P(XEr
≃ g) =

1

d

d∑

v=1

P(XEr(o,v) ≃ g) = πµ(g).

It follows that πµ is the law of X̃Er
defined as the unlabeled coloring associated to XEr

rooted at the oriented
edge (o, 1). Besides, since X is invariant, XEr

is in one-to-one correspondence with the triple (X̃Er
, σ, σ′)

where, given X̃Er
, σ and σ′ are independent and σ is a uniform random labeling of X̃Er

restricted to Eor ,
the (d − 1)-ary tree rooted at o in Er\{o, 1}, and similarly for σ′. From the relative entropy identity (2.5),
we find that

H(XEr
) = H(πµ) + 2K,

where K is the relative entropy of σ given X̃Eo
r
.

Secondly, we observe that XSr
is in one-to-one correspondence with the vector Y = (XE1

r
, . . . , XEd

r
)

where Ekr is the (d − 1)-ary tree rooted at k in Er\{o, k}. It follows that H(Y ) = H(XSr
). Also, if

Ỹ = (X̃E1
r
, . . . , X̃Ed

r
), we find from what precedes and the invariance of X that

H(XSr
) = H(Y ) = H(Ỹ ) + dK.
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Finally, the difference between Ỹ and X̃Sr
is that the neighbors of o are ordered (or labeled) in Ỹ . We

deduce from Lemma 2.4 below that

H(Ỹ ) = H(X̃Sr
)−

∑

g∈Ẽr

E[log(NX(g)!)] + log(d!).

This concludes the proof of (2.12). �

In the proof of Theorem 2.3, we have used the following elementary lemma. Recall that a vector is
exchangeable if its law is invariant by any permutation of its coordinates.

Lemma 2.4. Let F be a finite set and Z = (Z1, . . . , Zn) a random exchangeable vector in Fn. The counting
measure NZ =

∑n
i=1 δZi

associated to Z satisfies

H(Z) = H(NZ)−
∑

x∈F

E[logNZ(x)!] + logn!.

Proof. We consider the equivalence class on Fn, z ∼ z′ if z and z′ are equal up to a permutation of the
coordinates of z. We have z ∼ z′ if and only if Nz = Nz′ . Moreover, the number of vectors in the equivalence
class of z is given by the multinomial formula:

n!∏
x∈F Nz(x)!

.

Using the exchangeability of Z, we deduce that

P(Z = z) =

∏
x∈F Nz(x)!

n!

∑

z′∼z

P(Z = z′) =

∏
x∈F Nz(x)!

n!
P(NZ = Nz).

It then remains to use the relative entropy formula (2.5). �

3. Proofs of main results

3.1. First moment method: proof of Theorem 1.5. Let r ≥ 1, ǫ > 0 and Gn be uniformly sampled on
Gn(d). From Markov inequality, for any real h,

P(HGn
(µ, r, ǫ) ≥ h) = P(|FGn

(µ, r, ǫ)| ≥ enh) ≤ e−nhE|FGn
(µ, r, ǫ)|.

In particular, we find
1

n
logP(HGn

(µ, r, ǫ) ≥ h) ≤ Σn(µ, r, ǫ)− h.

From Theorem 2.3, we deduce the large deviations bound

lim sup
n→∞

1

n
logP(HGn

(µ, r, ǫ) ≥ h) ≤ Σr(µ)− h+ δ(ǫ),

where δ(ǫ) goes to 0 as ǫ→ 0. If h > Σr(µ), the right-hand side of the above expression is negative for all ǫ
small enough. We deduce in particular that for all ǫ small enough, P(HGn

(µ, r, ǫ) ≥ h) converges to 0. By
Lemma 1.2, this proves that h(µ, r) < h. It concludes the proof of Theorem 1.5. �

3.2. Second moment method: proof of Theorem 1.7. Let µ ∈ Id(M), r ≥ 1 and set p = µr ∈ Id,r(M).
In view of Theorem 1.5, we should prove that

h(µ, r) ≥ Σ(p). (3.1)

For ease of notation, we write FG(p, ǫ) in place of FG(µ, r, ǫ) (since this depends of µ only through µr = p).
The Paley-Zygmund inequality implies that

P

(
HGn

(µ, r, ǫ) ≥ Σn(µ, r, ǫ)−
1

n

)
= P

(
|FGn

(p, ǫ)| ≥ e−1
E|FGn

(p, ǫ)|
)

≥ (1− e−1)2
(E|FGn

(p, ǫ)|)2
E|FGn

(p, ǫ)|2

= (1− e−1)2
exp(2nΣn(µ, r, ǫ))

E|FGn
(p, ǫ)|2 .
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Since µr = p, we have Σ(p) = Σr(µ) and, by Theorem 2.3,

lim inf
n→∞

Σn(µ, r, ǫ) ≥ Σ(p)− δ(ǫ),

where δ(ǫ) goes to 0 as ǫ→ 0. We deduce that if we manage to prove that

lim sup
n→∞

1

n
logE|FGn

(p, ǫ)|2 ≤ 2Σ(p) + δ′(ǫ), (3.2)

where δ′(ǫ) goes to 0 as ǫ→ 0, then we would get that

lim inf
n→∞

1

n
log P(HGn

(µ, r, ǫ) ≥ Σ(p)− 2δ(ǫ)) ≥ −2δ(ǫ)− δ′(ǫ).

From Equation (2.1) in Theorem 2.1, this would imply that h(µ, r) ≥ Σ(p) as claimed in (3.1).
It thus remains to prove Equation (3.2). For concreteness, we may assume that the chosen distance d

generating the weak topology is the total variation distance. To that end, let ǫ > 0 and Nε be an ε-net on
the set of invariant coupling q ∈ Id,r(M2) of p and p. Given a graph G ∈ Gn(d), consider two colorings of
G with color set M whose r-neighborhood statistics are at most at total variation distance ε from p. The
number of such pairs is |FG(p, ε)|2. On the other hand, each pair is in fact a coloring of G on M2. Then
its r-neighborhood statistics is an element q′ ∈ Id,r(M2). Since both marginals of q′ are at most at total
variation distance ε from p, there is a measure q∗ ∈ Id,r(M2) whose total variation distance is at most 2ε
from q′ and whose both marginals are exactly p (for each marginal of q′, there is an invariant coupling of
this marginal and p such that the two colorings are equal with probability 1− ǫ). Therefore there exists an
element in the ε-net, q ∈ Nǫ such that the distance of q from the original pair of coloring is at most 3ε. We
conclude that

|FG(p, ε)|2 ≤
∑

q∈Nε

|FG(q, 3ε)|.

This implies that

E|FGn
(p, ǫ)|2 ≤ 1

|Gn(d)|
∑

G∈Gn(d)

∑

q∈Nε

|FG(q, 3ε)| =
∑

q∈Nε

exp(nΣn(µ(q), r, 3ǫ)).

It follows that,
1

n
logE|FGn

(p, ǫ)|2 ≤ max
q∈Nǫ

Σn(µ(q), r, 3ǫ) +
1

n
log |Nε|.

By Theorem 2.3, we deduce that, for some function δ′(ǫ) going to 0 with ǫ→ 0,

lim sup
n→∞

1

n
logE|FGn

(p, ǫ)|2 ≤ max
q∈Nǫ

Σ(q) + δ′(ǫ).

By assumption for any q ∈ Id,r(M2), Σ(q) ≤ 2Σ(p). We thus have proved that (3.2) holds. �

3.3. Proof of Theorem 1.11. In view of Theorem 1.5 and Theorem 1.7, it remains to prove that for any
t ≥ r,

h(µ(p), t) ≥ Σr(µ(p)) = Σ(p).

Let q ∈ Id,t(M2) be an invariant coupling of (µ(p))t and (µ(p))t. Then qr is an invariant coupling of p and
p (since ((µ(p))t)r = µ(p)r = p by construction). By Lemma 1.12, we have

Σ(q) = Σ(µ(q)) ≤ Σ(µ(µ(q)r)) = Σ(qr).

By assumption Σ(qr) ≤ 2Σ(p). However, by Lemma 1.12, we have Σ(p) = Σ(µ(p)t). It follows that

Σ(q) ≤ 2Σ(µ(p)t).

From Equation (3.1) applied to the radius t, this implies that

h(µ(p), t) ≥ Σ(µ(p)t).

By a last application of Lemma 1.12, the right-hand side of above expression is equal to Σ(p). This concludes
the proof of Theorem 1.11. �
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3.4. Application to factor graphs: proofs of Lemmas 1.16 and Lemma 1.17. We start with the
proof of Lemma 1.16.

Proof of Lemma 1.16. By construction, we have

ZG =
∑

f∈Mn

n∏

v=1

eψ((G,f,v)r) =
∑

f∈Mn

en〈distrG(f)r ,ψ〉.

Let ǫ > 0 and Nε be an ε-net of Id,r(M). The function p → 〈p, ψ〉 being uniformly continuous (since M
is finite), there exists a function δ(ǫ) → 0 as ǫ → 0 such that for any probability measure, say q, on rooted
colored graphs of radius r, if d(q, p) ≤ ǫ then |〈q, ψ〉 − 〈p, ψ〉| ≤ δ(ǫ). If NG is the number of colorings such
that distrG(f) is at distance larger than ǫ from Nε, it follows that

ZG ≤
∑

p∈Nε

|FG(µ(p), r, ǫ)|en〈p,ψ〉+nδ(ǫ) +NGe
n‖ψ‖∞ ,

≤ |Nǫ| max
p∈Id,r(M)

en(HG(µ(p),r,ǫ)+〈p,ψ〉+δ(ǫ)) +NGe
n‖ψ‖∞ .

Now, if Gn is uniformly sampled on Gn(d), then, for any fixed ǫ > 0, P(NGn
= 0) converges to 1 (since

distrGn
converges in probability to a Dirac mass at (Td, o)). Using (1.5) and taking the limit in n, we find

lim sup
n→∞

E
1

n
lnZGn

≤ max
p∈Id,r(M)

(
h̄(p) + 〈p, ψ〉+ δ′(ǫ)

)

with δ′(ǫ) → 0 as ǫ→ 0. This gives the upper bound in Lemma 1.16.
For the lower bound, we write similarly,

ZG ≥
∑

p∈Nε

|FG(µ(p), r, ǫ)|en〈p,ψ〉−nδ(ǫ),

≥ max
p∈Nε

en(HG(µ(p),r,ǫ)+〈p,ψ〉−δ(ǫ))

≥ max
p∈Id,r(M)

en(HG(µ(p),r,ǫ)+〈p,ψ〉−2δ(ǫ)).

The conclusion follows easily. �

Lemma 1.17 is a corollary of Lemma 1.16.

Proof of Lemma 1.17. For β > 0, let ZG(β) be the factor graph model:

ZG(β) =
∑

f∈Mn

n∏

v=1

enβψ((G,f,v)r).

By construction, we have

|M |−nZG(β) ≤ eβLG ≤ ZG(β).

By Lemma 1.16, we find

sup
p∈Id,r(M)

(
h(p)

β
+ 〈p, ψ〉 − ln |M |

β

)
≤ lim inf

n

ELGn

n
≤ lim sup

n

ELGn

n
≤ sup

p∈Id,r(M)

(
h̄(p)

β
+ 〈p, ψ〉

)
.

We recall that h̄(p) and h(p) take value in {−∞} ∪ [0, ln |M |]. We get

sup
p∈Id,r(M):h(p)≥0

(
〈p, ψ〉 − ln |M |

β

)
≤ lim inf

n

ELGn

n
≤ lim sup

n

ELGn

n
≤ sup

p∈Id,r(M):h(p)≥0

(
ln |M |
β

+ 〈p, ψ〉
)
.

We obtain the statement of the lemma by taking the limit β → ∞. �
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4. Extension to processes on unimodular Galton-Watson trees

4.1. An extended setting. We now discuss an extension to processes on random trees. We will focus our
attention on unimodular Galton-Watson trees. In this section, we fix a probability measure π on integers
with positive and finite expectation:

d =

∞∑

k=0

kπ(k) > 0.

We define ν̂, the size-biased version of ν as the probability measure defined by: for all integers k ≥ 0

π̂(k) =
(k + 1)π(k + 1)

d
.

Then, the unimodular Galton-Watson tree with degree distribution π, is the Galton-Watson tree whose vertex
set is a subset of Nf defined in (1.1) such that the root o has a number of offsprings No with distribution π
indexed by 1, . . . , No and all other vertices v have an independent number of offsprings Nv with distribution
π̂ indexed by (v, 1), . . . , (v,Nv). We will denote by T a realization of this random tree and UGW(π) the law
of the rooted tree (T, o). We note that (T, o) is randomly labeled in the sense defined in Subsection 1.1.

For example, if π is a Dirac mass at d then T is the d-regular tree. If π is a Poisson random variable with
mean d, then π̂ = π and T is a standard Galton-Watson tree with Poisson offspring distribution.

As its name suggests, the random rooted tree T is unimodular. Recall that a random rooted graph (G, o)
is unimodular if for all non-negative functions f on the set of doubly rooted graphs (a connected graph with
two ordered distinguished vertices) which are invariant by isomorphisms, we have

E

∑

v∈V

f(G, o, v) = E

∑

v∈V

f(G, v, o). (4.1)

where V is the vertex set of G and the expectation is with respect to the randomness of (G, o).
If M is a finite set, an invariant process X on T is defined as a random colored tree (T,X) such that

(T,X, o) is unimodular (that is, it satisfies (4.1) with G = (T,X) and f defined on the set of doubly rooted
colored graphs which are invariant by isomorphisms). We denote by Iπ(M) the set of laws of (T,X) with
X invariant colorings of T on the color set M .

Now, in order to define a relevant notion of sofic entropy, we need to choose the ensemble of finite graphs
Gn such that distrGn

converges to UGW(π). A natural choice is the family of uniform random graphs with
a given degree sequence. Let dn = (dn(1), . . . , dn(n)) be a sequence of integers, indexed by a subset of N,
whose sum is even and such that

distrdn =
1

n

n∑

v=1

δdn(v)

converges weakly to π. For technical simplicity, we assume that the degree sequence is uniformly bounded:
for some real ∆,

sup
n

max
1≤v≤n

dn(v) ≤ ∆. (4.2)

Note in particular that (4.2) implies that the support of π is contained in {0, . . . ,∆}. From Erdős-Gallai
Theorem [19], for all n large enough, the set Gn(dn) of simple graphs with vertex set [n] = {1, . . . , n} such
that for all v ∈ [n], v has degree dn(v) is not empty. Under these conditions, if Gn is uniformly distributed
on Gn(dn) then almost surely distrGn

converges to UGW(π), see for example [30]. In the statements below,
we will not repeat the above assumptions on the sequence (dn).

For a given probability measure µ ∈ Iπ(M) (that is, µ is the law of an invariant coloring (T,X)), we can
now reproduce the definition of weakly and typical processes and define the sofic entropy by taking limits
of HGn

(µ, r, ǫ) defined in (1.3). We do not repeat the definitions since there are identical except that Gn
is now a random graph uniformly distributed on Gn(dn). For integer r ≥ 1 and 0 < α < 1, we define the
quantity h̄(µ, r, α) and h(µ, r, α) exactly as done below (1.3). Lemma 1.2 continues to holds in this more
general setting.

Lemma 4.1. Let µ ∈ Iπ(M) and r ≥ 0. The function α 7→ (h̄(µ, r, α), h(µ, r, α)) is constant on (0, 1).

Proof. The proof of Theorem 2.1 works verbatim under the assumption (4.2). �
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We define h̄(µ, r) and h(µ, r) as the common value of h̄(µ, r, α) and h(µ, r, α). The upper and lower sofic
entropies h̄(µ) and h(µ) are the limits in r of h̄(µ, r) and h(µ, r). Exactly as in Lemma 1.3, as a corollary of
Lemma 4.1, we obtain the following claim.

Lemma 4.2. Let µ ∈ Iπ(M). We have h̄(µ) ≥ 0 (resp. h(µ) ≥ 0) if and only if µ is weakly (resp. strongly)
typical.

4.2. Annealed entropy. In this broader setting, the annealed entropy is defined as follows. Let (T, o) be
a randomly labeled rooted unimodular tree and X an invariant coloring of T with (T,X) having law µ. The
degree of a vertex v of T is denoted by deg(v). We assume that d = Edeg(o) > 0. As above, if r ≥ 0 is an
integer and S is a subset of the vertices of T , Br(S) is the subset of vertices of T at distance at most r from
S. For r ≥ 1, we set Sr = Br(o) and, if deg(o) ≥ 1, we set Er = Br−1({o, 1}) (since T is randomly labeled,
the neighbors of the root are indexed by (1, . . . , deg(o))).

We denote by XSr
the colored tree (T,X) restricted to Sr: by construction, XSr

has law µr. We also need
to define the law of X restricted to Er but this requires a biasing of the tree T . This is done as follows. A
(directed) edge-rooted graph is defined as a pair (G, ρ) formed by a connected graph G and a distinguished
directed edge ρ = (u, v) (that is, {u, v} is an edge of the graph). Now, we denote by ~µ the law on colored
edge-rooted trees defined by:

~µ(·) = 1

d
E[deg(o)1((T,X, (o, 1)) ∈ ·], (4.3)

where (T,X) has law µ and d = Edeg(o). Note that under the probability measure ~µ, o has at least degree
1 and thus {o, 1} is an edge of the tree. We denote by (~T , ~X, ρ), with ρ = (o, 1) a random variable with
law ~µ. It is easy to check that Equation (4.1) implies that ~µ is invariant by switching the two sides of the
oriented edge. Moreover, if T has law UGW(π) then ~T is given by two independent Galton-Watson trees
with offspring distribution π̂ whose roots are connected by the root-edge, see [1, Example 1.1]. In particular,
if π is a Dirac mass at d, then T = ~T .

We denote by ~XEr
the colored tree (~T , ~X) restricted to Er. The law of ~XEr

is ~µr, the restriction of ~µ to
Er. We observe that ~µr depends on µ only through its marginal µr.

Now, if X is an invariant coloring of T with law µ ∈ Iπ(M) and r ≥ 1 is an integer, we set

Σr(X) = Σr(µ) = H(XSr
)− d

2
H( ~XEr

)−H(π). (4.4)

See Remark 4.5 for an alternative expression which is arguably more natural. Thanks to assumption (4.2) it
is immediate that the above entropies are finite as soon as M is finite. Note also that Σr(µ) depends on µ
only through µr. We will check in Lemma 4.10 below that Σr(µ) is non-increasing in r. We may thus define

Σ(µ) = lim
r→∞

Σr(µ).

The quantities Σr(µ) and Σ(µ) are the annealed entropies of µr and µ. The following lemma generalizes
Lemma 4.3.

Theorem 4.3. For any µ ∈ Iπ(M) and integer r ≥ 1, we have

h̄(µ, r) ≤ Σr(µ) and h̄(µ) ≤ Σ(µ).

There is also an analog of Theorem 1.7.

Theorem 4.4. Let µ ∈ Iπ(M). For any integer r ≥ 1, if all invariant couplings ν of µ and µ, we have
Σr(ν) ≤ 2Σr(µ) then h(µ, r) = h̄(µ, r) = Σr(µ). In particular, if the above condition holds for an increasing
sequence of integers (rk)k≥1 then h(µ) = h̄(µ) = Σ(µ).

Remark 4.5. The annealed entropy is also given by the formula:

Σr(X) = H(XSr
|TSr

)− d

2
H( ~XEr

|~TEr
),

where H(X |Y ) = H(X,Y )−H(Y ) is the relative entropy. Indeed ~T is the union of two independent copies
of T ′, a Galton-Watson tree with offspring distribution π̂, while T is the union of N independent copies
of T ′ and with N independent with distribution π. It follows that, H(~TEr

) = 2H(T ′
Sr−1

) and H(TSr
) =

H(N) + dH(T ′
Sr−1

) (from (2.5)). In particular, H(TSr
)− (d/2)H(~TEr

) = H(N) = H(π).
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4.3. Markov processes. There is an extension of Theorem 1.11 and Theorem 1.15 in our extended setting.
The previous definitions of Markov processes carry over when conditioned on the random tree. More precisely,
we use the following definitions.

Definition 4.6 (Markov process). Let (T,X) be a random coloring of a random tree T on a finite set M with
law µ. For integer r ≥ 1, X or µ is r-Markov if conditioned on T on Br−1(e) and on the value at Br−1(e),
the (r − 1)-neighborhood of an edge e, the processes on the left and right subtrees of e are independent.
Similarly, X or µ is vertex-Markov if conditioned on T and on the value at a vertex, the processes on the
pending subtrees of that vertex are independent.

For integer r ≥ 1, let Iπ,r(M) denote the set of laws µ of coloring (T ′, X ′) on M which are randomly
labeled, such that T ′ has law UGW(π)r (the law of the restriction of T to Sr) and such that ~µ as defined above
is invariant by switching the two sides of the oriented edge. If µ ∈ Iπ(M) then µr ∈ Iπ(M). Conversely, we
have the following (see [12, Proposition 1.1]):

Lemma 4.7. Let r ≥ 1 integer and p ∈ Iπ,r(M). Then there is a unique r-Markov process µ(p) ∈ Iπ(M)
such that the marginal of µ(p) on Sr is equal to µ.

If p ∈ Iπ,r(M), we define Σ(p) = Σr(µ(p)) as in Equation (4.4). The following theorem is an extension of
Theorem 1.11.

Theorem 4.8. Let r ≥ 1 be an integer and p ∈ Iπ,r(M). If for all couplings q ∈ Iπ,r(M2) of p and p, we
have Σ(q) ≤ 2Σ(p) then h(µ(p)) = h̄(µ(p)) = Σ(p) and µ(p) is strongly typical.

There is a version of this theorem for vertex-Markov processes. As above, let Ie(M) denote the set of
probability measures on ME1 that are invariant by switching the two sides of the edge {o, 1}. If µ ∈ Iµ(M)
then the restriction of ~µ to E1 is in Ie(M). Conversely, if p ∈ Ie(M), there exists a unique vertex-Markov
process µ(p) in Iπ(M) such that ~µ restricted to E1 is in Ie(M). If (T,X) ∈ Iπ(M), we define

Σe(X) =
d

2
H( ~XE1

)− dH( ~Xo) +H(Xo)−H(π).

If p ∈ Ie(M), we set Σ(p) = Σe(µ(p)). The following theorem is an extension of Theorem 1.15.

Theorem 4.9. Let p ∈ Ie(M). If for all couplings q ∈ Ie(M2) of p and p, we have Σ(q) ≤ 2Σ(p) then
h(µ(p)) = h̄(µ(p)) = Σ(p) and µ(p) is strongly typical.

In the remainder of the paper, we explain the proofs of Theorem 4.3, Theorem 4.4, Theorem 4.8 and
Theorem 4.9. The proofs are entirely similar to the proof of the corresponding results for invariant processes
on Td. We will only sketch the proof and explain the differences.

4.4. Maximizers of the annealed entropy. The following lemma is the exact analog of Lemma 1.12 and
Lemma 1.14.

Lemma 4.10. Let X ∈ Iπ(M) and r ≥ 1. We have

Σr+1(X) ≤ Σr(X),

with equality if and only if XSr+1
is a r-Markov process on Sr+1. Moreover,

Σ1(X) ≤ Σe(X),

with equality if and only if XS1
is a vertex-Markov process on S1.

Proof. We start by the first statement. Arguing as in the proof of Lemma 4.10, it is enough to check the
inequality for r = 1. The inequality Σ2(X) ≤ Σ1(X) is equivalent to

H(XS2
)−H(XS1

)− d

2
H( ~XE2

) +
d

2
H( ~XE1

) ≤ 0. (4.5)

Let degT (o) and deg~T (o) be the degrees of the root in T and ~T . For integer k ≥ 1, from (4.3), we have,
for any event A,

P(( ~X, ~T ) ∈ A, deg~T (o) = k) =
k

d
P((X,T ) ∈ A, degT (o) = k).
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It follows that P(deg~T (o) = k) = kπ(k)/d and if k ≥ 1 is in the support of π,

P(( ~X, ~T ) ∈ A| deg~T (o) = k) = P((X,T ) ∈ A| degT (o) = k). (4.6)

In other words, (X,T ) and ( ~X, ~T ) have the same law when conditioned on the root degree is k ≥ 1. For a set
S of vertices, let us denote by by Hk(S) the entropy of the variable (T,X) restricted to S and conditioned on
the event degT (o) = k. Similarly, we set Hk(S|S′) = Hk(S, S

′)−Hk(S
′) is the associated relative entropy.

From (2.5), we may write, for t = 1, 2,

H(XSt
) = H(degT (o)) + π(0)H0(Xo) +

∞∑

k=1

π(k)Hk(St).

and

H( ~XEt
) = H(deg~T (o)) +

∞∑

k=1

kπ(k)

d
Hk(Et).

Hence, (4.5) is equivalent to the claim:
∞∑

k=1

π(k)

(
Hk(S2)−Hk(S1)−

k

2
Hk(E2) +

k

2
Hk(E1)

)
≤ 0. (4.7)

On the event degT (o) = k, for 1 ≤ i ≤ k, let Li = {(i, 1), . . . , (i, ni)} be the offspring of vertex i. Note that
the random variables XLi

conditioned on the event degT (o) = k are exchangeable. Then, the computation
from (2.6) to (2.8) gives

Hk(S2)−Hk(S1)−
k

2
Hk(E2) +

k

2
Hk(E1) ≤

k

2
Hk(L1|S1)−

k

2
Hk(L|E1)

The left-hand side of (4.7) is thus upper bounded by
∞∑

k=1

k

2
π(k)(Hk(L1|S1)−Hk(L|e)) =

d

2

(
H( ~XL1

| ~XS1
)−H( ~XL| ~XE1

)
)
.

We now use the invariance of ~µ by switching the two sides of the edge E1 = {o, 1}. We get H( ~XL| ~XE1
) =

H( ~XL1
| ~XE1

). Finally, since E1 ⊂ S1, we deduce that the inequalities (4.5)-(4.7) hold. As in the proof of
Lemma 1.12, the case of equality is a directed consequence of the case of equality in (2.5).

We now prove the second statement of Lemma 4.10, Σ1(X) ≤ Σe(X). It is equivalent to prove that

H(XS1
)− d

2
H( ~XE1

) ≤ d

2
H( ~XE1

)− dH( ~Xo) +H(Xo).

Arguing as above, we find that this is equivalent to
∞∑

k=1

π(k)(Hk(S1)− kHk(E1)− (k − 1)Hk(o)) ≤ 0.

As in the proof of Lemma 1.14, it remains to use that Hk(S1) ≤ H(o) + kHk(E1|o) and Hk(E1|o) =
Hk(E1)−Hk(o). In the case of equality, this implies the conditional independence of (X1, . . . , Xk) given Xo

and root degree equal to k. �

4.5. Combinatorial characterization of the annealed entropy. In our extended setting, the combi-
natorial interpretation of the annealed entropy Σr(µ) explained in Subsection 2.3 continues to hold. The
definition of Σn(µ, r, ǫ) in (2.9) remains unchanged. The following theorem is an extension of Theorem 2.3.

Theorem 4.11. Let µ ∈ Iπ(M) and r ≥ 1 integer. We have

lim
ǫ→0

lim inf
n→∞

Σn(µ, r, ǫ) = lim
ǫ→0

lim sup
n→∞

Σn(µ, r, ǫ) = Σr(µ).

Proof. Let s(d) = d/2− (d/2) log d. From [10, Theorem 2.16], we have

lim
n→∞

(
1

n
log |Gn(dn)| −

d

2
logn

)
= −s(d) +H(deg(o))− E[log(deg(o)!)],
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where deg(o) has law π. Also, from [12, 16], we have

lim
ǫ→0

lim inf
n→∞

(
1

n
log |Gn(µ, r, ǫ)| −

d

2
logn

)
= lim

ǫ→0
lim sup
n→∞

(
1

n
log |Gn(µ, r, ǫ)| −

d

2
logn

)
= Jr(µ),

where Jr(µ) = −s(d) +H(X̃Sr
)− d

2H(πµ)−
∑

g∈Ẽr
E[log(NX(g)!)] is defined exactly as in Theorem 2.3, the

only difference being that (2.11) is replaced by
∑

g∈Ẽr

NX(g) = deg(o).

Arguing as in the proof of Theorem 2.3, we have H(πµ) = H(X̃Er
) where X̃Er

is the unlabeled coloring
associated to ~XEr

. Hence, the theorem follows by checking that

H(X̃Sr
)− d

2
H(X̃Er

) = H(XSr
)− d

2
H( ~XEr

) +
∑

g∈Ẽr

E[log(NX(g)!)]− E[log(deg(o)!)]. (4.8)

In order to prove that (4.8) holds, we decompose the left-hand side of the possible values of the root-degree.
We write

H(X̃Sr
) = H(π) +H0(Xo) +

∞∑

k=1

π(k)Hk(X̃Sr
),

where Hk is the entropy conditioned on degT (o) = k. Similarly,

d

2
H(X̃Er

) =
d

2
H(π̂) +

∞∑

k=1

k

2
π(k)Hk(X̃Er

).

Let Ek[·] is the expectation conditioned on degT (o) = k. From (4.6), it follows that the identity (4.8) is
equivalent to

∞∑

k=1

π(k)

(
Hk(X̃Sr

)− k

2
Hk(X̃Er

)

)
=

∞∑

k=1

π(k)



Hk(XSr
)− k

2
Hk(XEr

) +
∑

g∈Ẽr

Ek[log(NX(g)!)]− log(k!)



.

(4.9)
We denote by Eor , the tree rooted at o in Er\{o, 1} and by E1

r the tree rooted at 1. Arguing as in the
proof of Theorem 2.3, we find

Hk(XEr
) = Hk(X̃Er

) +Kk +K ′
k,

where Kk is the relative entropy of a random labeling σ of X̃Eo
r

conditioned on deg(o) = k and K ′
k is the

relative entropy of a random labeling σ′ of X̃E1
r

conditioned on deg(o) = k. Similarly, arguing as in the proof
of Theorem 2.3, we get

Hk(XSr
) = Hk(X̃Sr

) + kK ′
k −

∑

g∈Ẽr

Ek[log(NX(g)!)] + log(k!).

We deduce that the right-hand side of (4.9) is equal to

∞∑

k=1

π(k)

(
Hk(X̃Sr

)− k

2
Hk(X̃Er

)

)
+

∞∑

k=1

π(k)

(
k

2
K ′
k −

k

2
Kk

)
.

Finally, we observe that
∞∑

k=1

π(k)

(
k

2
K ′
k −

k

2
Kk

)
=
d

2
(H(σ)−H(σ′)).

The above expression is equal to 0 because the law ~µ is invariant by switching the two sides of the edge
{o, 1}. This concludes the proof of Equation (4.8). �
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Remark 4.12. The proof of Theorem 4.11 gives the simplified expression Jr(µ) = −s(d)+Σr(µ)−E[log(deg(o)!)].
In particular, the proof of Lemma 4.10 has an interesting corollary for the maximizers of these functions
Jr(µ). Notably, in [12, Theorem 1.3] below (9) we may remove the assumption that ρ1 has finite support.
Consequently, from [12, Corollary 1.4], the annealed entropy Σ(ρ) defined in [12] for unimodular random
trees with average root degree d is uniquely maximized by UGW(Poi(d)).

4.6. Proofs of Theorem 4.3, Theorem 4.4, Theorem 4.8 and Theorem 4.9. As already pointed, the
conclusion of Theorem 2.1 holds in our extended setting. We may thus repeat verbatim the proofs in Section
3 and invoke Theorem 4.11 in place of Theorem 2.3 and Lemma 4.10 in place of Lemma 1.12. �
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