Proteomic Analysis of the Promastigote Secretome of Seven Leishmania Species
Résumé
Leishmaniasis is one of the most impactful parasitic diseases worldwide, endangering the lives of 1 billion people every year. There are 20 different species of Leishmania able to infect humans, causing cutaneous (CL), visceral (VL), and/or mucocutaneous leishmaniasis (MCL). Leishmania parasites are known to secrete a plethora of proteins to establish infection and modulate the host's immune system. In this study, we analyzed using tandem mass spectrometry the total protein content of the secretomes produced by promastigote forms from seven Leishmania species grown in serum-free in vitro cultures. The core secretome shared by all seven Leishmania species corresponds to up to one-third of total secreted proteins, suggesting conserved mechanisms of adaptation to the vertebrate host. The relative abundance confirms the importance of known virulence factors and some proteins uniquely present in CL- or VL-causing species and may provide further insight regarding their pathogenesis. Bioinformatic analysis showed that most proteins were secreted via unconventional mechanisms, with an important role for vesicle-based secretion for all species. Gene Ontology annotation and enrichment analyses showed a high level of functional conservation among species. This study contributes to the current knowledge on the biological significance of differently secreted proteins and provides new information on the correlation of Leishmania secretome to clinical outcomes and species-specific pathogenesis.