Detecting the unbalanced distributions in the seismic signal, applications to the martian (and terrestrial) data - Archive ouverte HAL
Poster De Conférence Année : 2021

Detecting the unbalanced distributions in the seismic signal, applications to the martian (and terrestrial) data

Résumé

Since February 2019, the InSight NASA mission and its seismometer, the SEIS, allows us to study and analyse the motion of the martian ground. In order to investigate the reliability of all event detections made during this mission and so, the possible amount of available sources to be further inverted for structure, we developed a new approach to quantify the equirepartition of the seismic signal. This statistic method allows to point out low energy transient signals that are characterized by asymmetric distributions of amplitudes in the raw signal. At the moment we are able to identify artifacts as glitches (instrumental response to an external perturbation) and the seismic signatures of atmospheric pressure drops that are travelling close to the lander (also visible on the pressure sensor). Although this method can be used 1) to classify the different kind of glitches and/or 2) to clean the raw signal, before any deconvolution, we think it can be well-suited 3) to detect low-energy-long-period seismic signals. This approach can be used on Earth data to better characterize the continuous seismic signal recorded at permanent stations.
Fichier principal
Vignette du fichier
Poster_Resif_2021_Arthur_Cuvier.pdf (5.79 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03442218 , version 1 (23-11-2021)

Identifiants

  • HAL Id : hal-03442218 , version 1

Citer

Arthur Cuvier, Éric Beucler, Mickaël Bonnin, Raphael Garcia, A. Mocquet, et al.. Detecting the unbalanced distributions in the seismic signal, applications to the martian (and terrestrial) data. 5èmes Rencontres Scientifiques et Techniques Résif, Nov 2021, Obernai (67210), France. ⟨hal-03442218⟩
76 Consultations
33 Téléchargements

Partager

More