Coverability Is Undecidable in One-Dimensional Pushdown Vector Addition Systems with Resets
Résumé
We consider the model of pushdown vector addition systems with resets. These consist of vector addition systems that have access to a pushdown stack and have instructions to reset counters. For this model, we study the coverability problem. In the absence of resets, this problem is known to be decidable for one-dimensional pushdown vector addition systems, but decidability is open for general pushdown vector addition systems. Moreover, coverability is known to be decidable for reset vector addition systems without a pushdown stack. We show in this note that the problem is undecidable for one-dimensional pushdown vector addition systems with resets.