Probabilistic programming: a powerful new approach to statistical phylogenetics - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2020

Probabilistic programming: a powerful new approach to statistical phylogenetics

Fredrik Ronquist
  • Fonction : Auteur
  • PersonId : 1083775
Jan Kudlicka
Viktor Senderov
Johannes Borgström
  • Fonction : Auteur
Daniel Lundén
Lawrence Murray
  • Fonction : Auteur
Thomas B Schön
  • Fonction : Auteur
David Broman
  • Fonction : Auteur

Résumé

Statistical phylogenetic analysis currently relies on complex, dedicated software packages, making it difficult for evolutionary biologists to explore new models and inference strategies. Recent years have seen more generic solutions based on probabilistic graphical models, but this formalism can only partly express phylogenetic problems. Here we show that universal probabilistic programming languages (PPLs) solve the modeling language expressivity problem, while still supporting automated generation of efficient inference algorithms. To prove the latter point, we develop automated generation of sequential Monte Carlo (SMC) algorithms for PPL descriptions of arbitrary biological diversification (birth-death) models. SMC is a new inference strategy for these problems, supporting both parameter inference and efficient Bayesian model testing. We then automatically generate SMC algorithms for several recent diversification models that have been difficult or impossible to tackle previously. Finally, applying these algorithms to 40 bird phylogenies, we show that models with slowing diversification, constant turnover and many small shifts generally explain the data best. Our work opens up several related problem domains to PPL approaches, and shows that few hurdles remain before these techniques can be effectively applied to the full range of phylogenetic models.
Fichier principal
Vignette du fichier
2020.06.16.154443v2.full.pdf (370.23 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03438419 , version 1 (01-12-2020)
hal-03438419 , version 2 (22-11-2021)

Identifiants

Citer

Fredrik Ronquist, Jan Kudlicka, Viktor Senderov, Johannes Borgström, Nicolas Lartillot, et al.. Probabilistic programming: a powerful new approach to statistical phylogenetics. 2020. ⟨hal-03438419v1⟩
119 Consultations
135 Téléchargements

Altmetric

Partager

More