Maximum time step for high order BDF methods applied to gradient flows - Archive ouverte HAL
Pré-Publication, Document De Travail Année : 2021

Maximum time step for high order BDF methods applied to gradient flows

Résumé

For a backward differentiation formula (BDF) applied to the gradient flow of a semiconvex function, quadratic stability implies gradient stability. Namely, it is possible to build a Lyapunov functional for the discrete-in-time dynamical system, with a restriction on the time step. The maximum time step which can be derived from quadratic stability has previously been obtained for the BDF1, BDF2 and BDF3 schemes. Here, we compute it for the BDF4 and BDF5 methods. We also prove that the BDF6 scheme is not quadratically stable. Our results are based on the tools developed by Dahlquist and other authors to show the equivalence of A-stability and G-stability.
Fichier principal
Vignette du fichier
BDFk_Pierre.pdf (1.05 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03438159 , version 1 (21-11-2021)

Identifiants

  • HAL Id : hal-03438159 , version 1

Citer

Morgan Pierre. Maximum time step for high order BDF methods applied to gradient flows. 2021. ⟨hal-03438159⟩
132 Consultations
215 Téléchargements

Partager

More