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MAXIMUM TIME STEP FOR HIGH ORDER BDF METHODS
APPLIED TO GRADIENT FLOWS

MORGAN PIERRE

Dedicated to Hélène

Abstract. For a backward differentiation formula (BDF) applied to the
gradient flow of a semiconvex function, quadratic stability implies gradi-
ent stability. Namely, it is possible to build a Lyapunov functional for the
discrete-in-time dynamical system, with a restriction on the time step. The
maximum time step which can be derived from quadratic stability has pre-
viously been obtained for the BDF1, BDF2 and BDF3 schemes. Here, we
compute it for the BDF4 and BDF5 methods. We also prove that the BDF6
scheme is not quadratically stable. Our results are based on the tools devel-
oped by Dahlquist and other authors to show the equivalence of A-stability
and G-stability.

Keywords: gradient flow, BDF method, semiconvex function, Lasalle’s in-
variance principle, Lojasiewicz inequality, Allen-Cahn equation.

1. Introduction

Backward differentiation formulae (BDF) were first introduced by Curtiss
and Hirschfelder for the numerical resolution of stiff ordinary differential equa-
tions [11]. They have been extensively studied (see [15, 16, 27] and references
therein). In recent years, BDF methods have been proved to be very pow-
erful for the time discretization of semilinear parabolic problems in various
situations. In particular, the Nevanlinna-Odeh multipliers which date back to
1981 [23] have been used to obtain stability and errors estimates on finite time
intervals in the works [2, 21].

BDF methods also have very nice properties regarding the asymptotic be-
haviour of solutions. This is well illustrated by the Allen-Cahn equation, which
reads

∂u

∂t
−∆u+ f ′(u) = 0, x ∈ Ω, t > 0, (1.1)

where Ω is a bounded subset of Rd with smooth boundary (d = 1, 2 or 3). The
unknown function u is the order parameter and the function f ′ is the derivative
of a double-well potential. A standard choice is the quartic potential

f(s) =
1

4ε2
(s2 − 1)2 (s ∈ R), (1.2)
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where ε > 0 represents the typical thickness of the interface between two
phases. The Allen-Cahn equation is usually endowed with homogeneous Neu-
mann boundary conditions. It is the L2(Ω)-gradient flow of the energy

E(u) =

∫
Ω

1

2
|∇u|2 + f(u)dx. (1.3)

This can be used to prove that every solution to (1.1) with the quartic poten-
tial (1.2) converges to a steady state as t goes to infinity. This result is based
on Lasalle’s invariance principle and on a Lojasiewicz-Simon inequality, which
involves the analycity of f [26]. We refer the reader to the review [17] for more
details.

In [13], Elliott and Stuart proposed several time and space discretizations
of (1.1) which preserve the gradient flow structure. In particular, they proved
that for k = 1, 2 and 3, the k-step BDF method (BDFk) has this property, with
a restriction on the time step. They managed to build a Lyapunov functional
which is a modified version of (1.3) for the discrete-in-time dynamical system.
As a consequence, every solution to the time discrete problem converges to a
steady state: this result is based on arguments similar to the time continuous
problem [4, 5, 7, 18, 22].

In [27], Stuart and Humphries generalized the result in [13] to the case of
semiconvex functions. They also proposed to investigate the gradient stability
of the k-step BDF method for k = 4, 5 and 6. In [7], the author and his
collaborators generalized the construction in [27] and proved that the BDF4
and BDF5 are gradient stable, with a restriction on the time step. For this
purpose, they introduced a notion of quadratic stability involving quadratic
forms. Quadratic stability implies gradient stability and it is a definition easier
to work with, because of its algebraic nature. Numerical simulations suggested
that the BDF6 method is not quadratically stable. For k ≥ 7, k-step BDF
methods are not zero stable [15] and so they cannot be gradient stable [7,
Remark 2.8].

In [25], the author computed the maximum time step which can be derived
from quadratic stability for the BDF3 scheme applied to a gradient flow. The
purpose was also to try and have a better understanding of the BDF6 scheme,
but the method was incomplete to achieve this goal. In this paper, we manage
to compute the maximum time step for the BDF4 and BDF5 schemes, and we
prove that the BDF6 scheme is not quadratically stable. The idea is to apply
to our situation the powerful tools developped by Dahlquist [12], Baiocchi and
Crouzeix [6] (see also [16, Section V.6]) to show the equivalence of A-stability
and G-stability.

The situation for quadratic stability is therefore very analogous to what hap-
pens with the Nevanlinna-Odeh multipliers, which are valid for BDF schemes
up to order 5 only. However, for k ≥ 2, there is a possible gap between qua-
dratic stability and gradient stability [25, Section 3.5]. Therefore, there is still
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a slight chance to prove that the BDF6 is gradient stable. In a related man-
ner, stability results on finite time intervals have recently been obtained in the
work [3] for the BDF6 scheme applied to semilinear parabolic equations.

The manuscript is organized as follows. In Section 2, we compute a maximum
value related to quadratic stability for the BDF4, BDF5 and BDF6 schemes, by
using tools developped for Dahlquist’s equivalence theorem. In Section 3, we
show how quadratic stability implies gradient stability with a maximum time
step for this approach. We also derive some consequences for the asymptotic
behaviour of discretized gradient flows, including the non-autonomous case.
Our analysis is made in the Euclidean space RN , but we stress that the tools
developped here also apply to the infinite dimensional case, for PDEs such as
the Allen-Cahn equation [7] or the Cahn-Hilliard equation [5, 8].

2. Optimal constants for quadratic stability

We consider the k-step BDF scheme applied to the gradient flow

y′(t) = −∇F (y(t)), t ≥ 0

in RN , where F : RN → R is of class C1. The k-step BDF method with fixed
time step ∆t > 0 reads: let y0, . . . , yk−1 in RN and for n = 0, 1, . . . , let yn+k

solve

1

∆t

k∑
j=1

1

j
∂jyn+k = −∇F (yn+k), (2.1)

where ∂yn+k = yn+k − yn+k−1 is the backward difference operator and by in-
duction, ∂jyn+k = ∂j−1(∂yn+k) for j ≥ 2.

If F is a semiconvex function, in order to find a Lyapunov function for the
discrete-in-time dynamical system (2.1), we take the inner product of (2.1)
with ∂yn+k (see (3.15)) and we are led to consider the quantity

Γk =

〈
k∑
j=1

1

j
∂jyn+k, ∂yn+k

〉
, (2.2)

where 〈·, ·〉 denotes the inner product in RN . By induction, it is easily seen that
for j ≥ 1, ∂jyn+k is a linear combination of ∂yn+1, . . . , ∂yn+k. Thus, it is conve-
nient to see Γk as a quadratic form depending on the variables ∂yn+1, . . . , ∂yn+k

in RN , namely

Γk =

〈
k∑
j=1

1

j
∂j−1∂yn+k, ∂yn+k

〉
.

We introduce the polynomial of degree k − 1

δk(z) =
k∑
j=1

1

j
(1− z)j−1 =

k−1∑
i=0

δiz
i, (2.3)
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so that

Γk =

〈
k−1∑
i=0

δi∂yn+k−i, ∂yn+k

〉
(2.4)

The polynomial δk is analogous to the “defining polynomial” used for the anal-
ysis of multistep schemes (see, e.g., [15, 27]), but we use here the variables
∂yn+1, . . . , ∂yn+k instead of yn, . . . , yn+k. The fundamental idea is to apply
Dahlquist’s theorem, which is stated below, to the polynomials δ(z) = δk(z)−β
and µ(z) = 1, where β ∈ R is optimal.

Lemma 2.1 ([6, 12] and Section V.6 in [16]). Let δ(z) and µ(z) be real poly-
nomials of degree at most k − 1 (at least one of them of exact degree k − 1)
that have no common divisor. If

Re
δ(z)

µ(z)
> 0 for |z| < 1, (2.5)

then there exist a symmetric positive definite matrix G = (gij) ∈ Rk−1 × Rk−1

and real numbers a1, . . . , ak such that for all v1, . . . , vk ∈ RN ,〈
k−1∑
i=0

δivk−i,
k−1∑
j=0

µjvk−j

〉
=

k−1∑
i,j=1

gij〈vi+1, vj+1〉 −
k−1∑
i,j=1

gij〈vi, vj〉+

∥∥∥∥∥
k∑
i=1

aivi

∥∥∥∥∥
2

.

(2.6)

Hereafter, ‖ · ‖ denotes the Euclidean norm in RN . We have

δ2(z) =
3

2
− 1

2
z,

δ3(z) =
11

6
− 7

6
z +

1

3
z2,

δ4(z) =
25

12
− 23

12
z +

13

12
z2 − 1

4
z3,

δ5(z) =
137

60
− 163

60
z +

137

60
z2 − 21

20
z3 +

1

5
z4,

δ6(z) =
49

20
− 71

20
z +

79

20
z2 − 163

60
z3 +

31

30
z4 − 1

6
z5.

For 2 ≤ k ≤ 6 we consider the region

Dk = {δk(z) : |z| < 1} (2.7)

which is drawn in pink in Figures 1-3 and we define

βk = inf{Re δk(z) : |z| < 1}.
By examing the curve θ 7→ δk(e

iθ) for θ ∈ [0, 2π] we find that

βk = min {Re δk(z) : |z| = 1} .
and we obtain

β2 = 1, β3 =
95

96
, β4 = 0.8141 . . . β5 = 0.1855 . . . and β6 = −1.37 . . . . (2.8)
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The exact value of β4 is

β4 =
664

729
− 43

√
43

2916
and the exact value of β5 is rather lengthy (see (2.10)). It is easy to check that
β6 < 0. For instance, we have

β6 < Re
(
δ6(e−2iπ/3)

)
= − 9

10
< 0. (2.9)

Example 2.2. Let us compute β5 (the other cases are similar). We consider
the curve {δ5(eiθ) : θ ∈ [0, 2π]} in C (cf. Figure 2, right). We have

x(θ) = Re
(
δk(e

iθ)
)

= p5(cos(θ)),

where

p5(X) =
8

5
X4 − 21

5
X3 +

89

30
X2 +

13

30
X +

1

5
.

Thus,
d

dθ
x(θ) = − sin(θ)p′5(cos θ) with

p′5(X) =
32

5
X3 − 63

5
X2 +

89

15
X +

13

30
.

The critical points of x(θ) are obtained for sin θ = 0 or p′5(cos θ) = 0. The only
real root of p′5 is

X1 =
21

32
− 1121

96
3
√

49041− 16
√

3891895
− 1

96

3

√
49041− 16

√
3891895.

Among these critical points, the minimal value of x(θ) is obtained for cos θ =
X1 and so

β5 = p5(X1) = 0.1855459753 . . . . (2.10)
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Figure 1. Region (2.7) for BDF2 (left) and BDF3 (right).

The analysis above shows:
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Figure 2. Region (2.7) for BDF4 (left) and BDF5 (right).
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Figure 3. Region (2.7) for BDF6.

Lemma 2.3. Let 2 ≤ k ≤ 6. Then for every β ≤ βk, we have

Re δk(z)− β > 0 for |z| < 1, (2.11)

where βk given by (2.8). Moreover, if β > βk, then property (2.11) fails.

From these considerations, we deduce:

Theorem 2.4. Let 2 ≤ k ≤ 6 and let δk be defined by (2.3). For each β < βk,
there exist a symmetric positive definite matrix Qk = (qij) ∈ Rk−1 × Rk−1 and
a symmetric positive definite matrix Rk = (rij) ∈ Rk × Rk such that for all
v1, . . . , vk ∈ RN ,〈

k−1∑
i=0

δivk−i, vk

〉
= β‖vk‖2 +

k−1∑
i,j=1

qij〈vi+1, vj+1〉−
k−1∑
i,j=1

qij〈vi, vj〉+
k∑

i,j=1

rij〈vi, vj〉.

(2.12)
The value βk is the supremum of the numbers for which this property holds.
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Proof. By Lemma 2.3, we may apply Lemma 2.1 to the polynomials δ(z) =
δk(z) − βk and µ(z) = 1. Thus, there exist a positive definite matrix G =
(gij) ∈ Rk−1 × Rk−1 and real numbers a1, . . . , ak such that〈

k−1∑
i=0

δivk−i, vk

〉
= βk‖vk‖2 +

k−1∑
i,j=1

gij〈vi+1, vj+1〉−
k−1∑
i,j=1

gij〈vi, vj〉+

∥∥∥∥∥
k∑
i=1

aivi

∥∥∥∥∥
2

.

(2.13)
Let β < βk. We consider for ε > 0 the symmetric matrix

Gε = (gεij) ∈ Rk−1 × Rk−1

defined by

gεij =

{
gij if i 6= j,

gii + iε if i = j.

By expressing G in terms of Gε, equation (2.13) becomes〈
k−1∑
i=0

δivk−i, vk

〉
= β‖vk‖2 +

k−1∑
i,j=1

gεij〈vi+1, vj+1〉 −
k−1∑
i,j=1

gεij〈vi, vj〉

+(βk − β − (k − 1)ε)‖vk‖2 + ε
k−1∑
i=1

‖vi‖2 +

∥∥∥∥∥
k∑
i=1

aivi

∥∥∥∥∥
2

.(2.14)

By continuity, for ε > 0 small enough, the matrix Gε is positive definite and

βk − β − (k − 1)ε > 0. (2.15)

This shows that formula (2.12) holds with Qk = Gε and Rk defined by the
second line of (2.14).

Conversely, we assume now that (2.12) holds for a number β ∈ R, a sym-
metric positive definite matrix Qk and a positive definite matrix Rk. We may
assume that N = 1 since R ' R × {0}N−1 ⊂ RN . Then (2.12) shows that for
all v1, . . . , vk ∈ R, we have

k−1∑
i=0

δivk−ivk = β|vk|2 + V T
2 QkV2 − V T

1 QkV1 + V TRkV,

where

V = (v1, . . . , vk)
T , V1 = (v1, . . . , vk−1)T and V2 = (v2, . . . , vk)

T .

If we consider Rk and Qk as hermitian matrices, this implies that for all Z =
(z1, . . . , zk)

T ∈ Ck, we have

Re

(
k−1∑
i=0

δizk−iz̄k

)
= β|zk|2 + ZT

2 QkZ̄2 − ZT
1 QkZ̄1 + ZTRkZ̄,

where

Z1 = (z1, . . . , zk−1)T and Z2 = (z2, . . . , zk)
T .
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Let ζ ∈ C such that |ζ| > 1. On choosing Z = (ζ1, ζ2, . . . , ζk), we obtain

|ζ|2k Re

(
k−1∑
i=0

δiζ
−i

)
= β|ζ|2k + (|ζ|2 − 1)ZT

1 QkZ̄1 + ZTRkZ̄.

Since |ζ| > 1 and Qk, Rk are positive definite, this shows that

Re

(
k−1∑
i=0

δiζ
−i

)
− β > 0.

By Lemma 2.3, we necessarily have β ≤ βk and the proof is complete. �

Remark 2.5. Since β6 < 0, Theorem 2.4 shows that the BDF6 scheme is not
quadratically stable in the sense defined in [7]. The cases k > 6 and k < 6
have been considered in [7]. Therefore, the k-step BDF method is quadratically
stable if and only 1 ≤ k ≤ 5.

Remark 2.6. For a given β < βk, the couple (Qk, Rk) in Theorem 2.4 is
generally not unique. For instance, if k = 2 and β = 1/2 < β2 = 1, we have

3

2
‖v2‖2− 1

2
〈v2, v1〉 = β‖v2‖2 +

1

4
‖v2‖2− 1

4
‖v1‖2 +

1

4
‖v1−v2‖2 +

1

2
‖v2‖2, (2.16)

in which case Q2 = (1/4), or

3

2
‖v2‖2− 1

2
〈v2, v1〉 = β‖v2‖2+

1

2
‖v2‖2− 1

2
‖v1‖2+

1

2
‖v1−

1

2
v2‖2+

3

8
‖v2‖2, (2.17)

in which case Q2 = (1/2).

Remark 2.7. There is a constructive proof of Lemma 2.1, as explained in [16,
Section V.6]. In turn, this gives a constructive proof of Theorem 2.4. For-
mula (2.13) can be obtained as follows. We first introduce the polynomials

ρk(z) = zk−1 (δk(1/z)− βk) and σk(z) = zk−1.

Then, we consider the function

Ek(z) =
1

2

(
ρk(z)σk(1/z) + ρk(1/z)σk(s)

)
.

It can be factorized as

Ek(z) = ak(z)ak(1/z) with ak(z) =
k−1∑
i=0

ai+1z
i. (2.18)

The coefficients a1, . . . , ak in (2.13) are given by the coefficients of the polyno-
mial ak(z). Next, we consider the polynomial

Pk(ω, ζ) =
1

2

(
ρk(ω)σk(ζ) + ρk(ζ)σk(ω)

)
− ak(ω)ak(ζ).
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By (2.18), Pk vanishes when ωζ − 1 = 0. It can therefore be written as

Pk(ω, ζ) =
(
ωζ − 1

) k−1∑
i,j=1

gijω
i−1ζj−1.

This gives the matrix Gk = (gij) in (2.13). Once formula (2.13) is known, it
is easy to find ε > 0 small enough such that Gε is positive definite and (2.15)
holds (cf. examples below). We note that in many applications, formula (2.13)
is sufficient but in some cases, it is best to have a positive definite matrix Rk

(see, e.g., Theorem 3.7).

Example 2.8. If k = 2, we have ρ2(z) = z/2− 1/2 and σ2(z) = z. Thus,

E2(z) =
1

4

(
2− z − 1/z

)
= a2(z)a2(1/z) with a2(z) = z/2− 1/2.

The polynomial P2 is

P2(ω, ζ) =
1

4
(ωζ − 1),

so G2 = (1/4). Thus, formula (2.13) reads〈
3

2
v2 −

1

2
v1, v2

〉
= β2‖v2‖2 +

1

4
‖v2‖2 − 1

4
‖v1‖2 +

1

4
‖v2 − v1‖2.

If we choose β = 1/2 and ε = 1/4 in (2.14), we recover formula (2.17).

Example 2.9. For k = 3, we have

ρ3(z) =
81

96
z2 − 7

6
z +

1

3
and σ3(z) = z2.

The algorithm described in Remark 2.7 gives

a3(z) =
1√
6

(z2 − 7

4
z + 1)

and

P3(ω, ζ) =
(
ωζ − 1

)(1

6
+

65

96
ωζ − 7

24
(ω + ζ)

)
,

and so

G3 =
1

6

(
1 −7/4
−7/4 65/16

)
.

The Cholesky factorization of G3 is G3 = L3L
T
3 with

L3 =
1√
6

(
1 0
−7/4 1

)
.

We recover the same formula as in [25, Theorem 1], where β3 was obtained by
maximizing the constant β in (2.12).

Remark 2.10. In Theorem 2.4, it is possible to replace RN by a Hilbert space
H and 〈·, ·〉 by the inner product 〈·, ·〉H inH. The Euclidean norm is replaced by
the Hilbertian norm in H, ‖ · ‖H. For the Allen-Cahn equation, H = L2(Ω) [7]
and for the Cahn-Hilliard equation, H = H−1 [8].
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3. Gradient stability of BDF schemes

3.1. The continuous problem. We consider the gradient flow

y′(t) = −∇F (y(t)), t ≥ 0, (3.1)

where y : [0,+∞) → RN and F ∈ C1(RN ,R). Hereafter, we assume that F
satisfies the following two conditions,

〈∇F (v)−∇F (w), v − w〉 ≥ −cF‖v − w‖2, ∀v, w ∈ RN , (3.2)

for some constant cF ≥ 0 and

lim
‖v‖→+∞

F (v) = +∞. (3.3)

Condition (3.3) is a coercivity condition. Condition (3.2) is known as a one-
sided Lipschitz condition for ∇F . Equivalently, we can say that v 7→ ∇F +cFv
is a maximal monotone operator on RN or that the function

v 7→ F (v) +
cF
2
‖v‖2

is convex on RN . A function F which satisfies (3.2) is called a semiconvex
function.

If F is semiconvex, then there exists a minimum number c?F ≥ 0 for which
property (3.2) holds and we denote by cF this optimal constant. In particular,
F is convex if and only if cF = 0.

By the Cauchy-Peano theorem and by monotonicity (see, e.g., [9]), for every
y0 ∈ RN , there exists a unique y ∈ C1([0,+∞),RN) of (3.1) such that y(0) =
y0. On taking the inner product of (3.1) by −y′(t), we obtain that

d

dt
F (y(t)) = −‖y′(t)‖2, (3.4)

for all t ≥ 0. In particular, F (y(t)) is nonincreasing, and the coercivity condi-
tion (3.3) implies that y is bounded. By Lasalle’s invariance principle [17], the
ω-limit set of y(0), defined by

ω(y(0)) =
{
y? ∈ RN : ∃tn → +∞, y(tn)→ +∞

}
,

is a nonempty compact and connected subset of RN , which is included in the
set S of critical points of F , that is

S =
{
y ∈ RN : ∇F (y) = 0

}
. (3.5)

If the critical points of F are isolated, this implies that y(t) tends to a critical
point y? of F in RN as t tends to +∞. Otherwise, convergence to equilibrium
may fail. We refer to [1, 17, 24] for such counterexamples where the ω-limit
set is a cycle.  Lojasiewicz [19, 20] proved that if F is real analytic, then y(t)
converges to a critical point of F as t tends to +∞.

In [10, Section 5.1], Chill and Jendoubi proved that a similar convergence
result holds for the non-autonomous gradient flow

y′(t) = −∇F (y(t)) + g(t), t ≥ 0, (3.6)
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where g : [0,+∞) → R is a given function which tends to 0 at infinity in an
appropriate sense. In this case, the system (3.6) is asymptotically autonomous.

3.2. BDFk scheme applied to a gradient flow. Let ∆t > 0 denote the
time step. The general k-step backward differentiation formula (BDF) for (3.1)
reads: let y0, . . . , yk−1 in RN and for n = 0, 1, . . . , let yn+k solve

k∑
j=1

1

j
∂jyn+k = −∆t∇F (yn+k). (3.7)

The one-step BDF method is the backward Euler scheme:

yn+1 − yn = −∆t∇F (yn+1), n ≥ 0. (3.8)

The two-step BDF method reads

3

2
yn+2 − 2yn+1 +

1

2
yn = −∆t∇F (yn+2), n ≥ 0. (3.9)

If F ∈ Ck+2(RN ,R) (k ≤ 6) and if the initial conditions are well chosen, the
error between the solution y of (3.1) and its approximation given by the BDF
scheme (3.7) is of order O(∆tk) on finite time intervals [27, Theorem 3.5.7].

We will consider a non-autonomous version of (3.7), namely

k∑
j=1

1

j
∂jyn+k = −∆t∇F (yn+k) + ∆tgn+k, n ≥ 0, (3.10)

where (gn)n∈N is a given sequence in RN which belongs to l2(N)N . In particular,
gn → 0 and the scheme (3.10) is asymptotically autonomous. It is a discrete
version of (3.6).

For 1 ≤ k ≤ 6, we define

αk =
k∑
j=1

1/j > 0. (3.11)

At every step n ≥ 0, the vector yn+k in (3.10) is computed from yn, yn+1,
. . . , yn+k−1 by solving a nonlinear equation. The assumptions (3.2)-(3.3) on
F imply that the scheme is solvable for all ∆t and uniquely solvable if ∆t is
small enough [7].

Proposition 3.1. Let y0, . . . yk−1 be given in RN . For each ∆t > 0, there
exists a least one sequence (yn)n∈N in RN with initial values y0, . . . yk−1 which
complies with (3.10). If cF∆t < αk, this sequence is unique.

If cF∆t ≥ αk, uniqueness may fail [25, Example 1].
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3.3. Gradient stability of BDFk schemes. Let us see how quadratic sta-
bility implies gradient stability. We assume that 2 ≤ k ≤ 5 since the BDF6
method is not quadratically stable. The case k = 1 is considered in [14].

By Theorem 2.4, for each β ∈ (0, βk), there exist a symmetric positive defi-

nite matrix Qβ
k = (qij) ∈ Rk−1×Rk−1 and a symmetric positive definite matrix

Rβ
k = (rβij) ∈ Rk × Rk such that for all v1, . . . , vk ∈ RN , formula (2.12) holds.

We denote by qβk and rβk the positive definitive quadratic forms on (RN)k−1 and

(RN)k associated to Qβ
k and Rβ

k , respectively. Namely,

qβk (v1, . . . , vk−1) =
k−1∑
i,j=1

qij〈vi, vj〉 and rβk (v1, . . . , vk) =
k∑

i,j=1

rij〈vi, vj〉.

For a sequence (yn)n∈N in RN , we write

ŷn+k = (yn+k, ∂yn+k, . . . , ∂yn+2)

and

F̂β(ŷn+k) = F (yn+k) +
1

∆t
qβk (∂yn+2, . . . , ∂yn+k).

In other words, the function F̂β is defined for every (v1, v2, . . . , vk) ∈ (RN)k by

F̂β(v1, . . . , vk) = F (v1) +
1

∆t
qβk (vk, . . . , v2). (3.12)

The gradient stability of the BDFk scheme (3.10) reads as follows.

Theorem 3.2. Let 2 ≤ k ≤ 5. Assume that cF∆t < 2βk, let β ∈ (cF∆t/2, βk)
and set ε = β − cF∆t/2 > 0. If (yn)n∈N is a sequence in RN which complies
with the non-autonomous BDFk scheme (3.10), then for all n ≥ 0 we have

F̂β(ŷn+k) +
1

∆t
rβk (∂yn+1, . . . , ∂yn+k) ≤ F̂β(ŷn+k−1) +

∆t

4ε
‖gn+k‖2. (3.13)

Proof. Using assumption (3.2), we easily obtain that

F (v)− F (w) ≥ 〈∇F (w), v − w〉 − cF
2
‖v − w‖2, ∀v, w ∈ RN . (3.14)

We take the inner product of (3.10) with ∂yn+k. We find

Γk = ∆t〈∇F (yn+k), yn+k−1 − yn+k〉+ ∆t〈gn+k, ∂yn+k〉, (3.15)

where Γk is defined by (2.2). Using (3.14), the Cauchy-Schwarz inequality and
Young’s inequality, we obtain

Γk ≤ ∆t
(
F (yn+k−1)− F (yn+k) +

cF
2
‖∂yn+k‖2

)
+ ε‖∂yn+k‖2 +

∆t2

4ε
‖gn+k‖2.

Now, we use (2.4) and formula (2.12). This yields

(β − cF∆t

2
− ε)‖∂yn+k‖2 + qβk (∂yn+2, . . . , ∂yn+k)− qβk (∂yn+1, . . . , ∂yn+k−1)

+rβk (∂yn+1, . . . , ∂yn+k) ≤ ∆t (F (yn+k−1)− F (yn+k)) +
∆t2

4ε
‖gn+k‖2,
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which is equivalent to (3.13). �

If (yn)n∈N is a sequence in RN , we define its ω-limit set by

ω((yn)n∈N) =
{
y? ∈ RN : ∃np → +∞ such that ynp → y?

}
.

We recall the following standard result (see, e.g., [25, Lemma 2]):

Lemma 3.3. If (yn)n∈N is a bounded sequence in RN such that yn+1− yn → 0,
then ω((yn)n∈N) is a nonempty compact and connected subset of RN .

Corollary 3.4. Let 2 ≤ k ≤ 5 and assume that cF∆t < 2βk. If (yn)n∈N is a
sequence in RN which complies with (3.10), then ∂yn → 0 and ω((yn)n∈N) is a
nonempty compact and connected subset of RN included in S (cf. (3.5)).

Proof. By summing relation (3.13) from n = 0 to p, we obtain

F̂β(ŷp+k) +
1

∆t

p∑
n=0

rβk (∂yn+1, . . . , ∂yn+k) ≤ F̂β(ŷk−1) +
∆t

4ε

p∑
n=0

‖gn+k‖2.

Since qβk and rβk are positive definite, this shows that (F (yn+k))n∈N is bounded
from above. By coercivity of F (cf. (3.3)), (yn)n∈N is bounded. The function
F is also bounded from below, so by letting p tend to +∞, we obtain

1

∆t

∞∑
n=0

rβk (∂yn+1, . . . , ∂yn+k) ≤ − inf
R
F + F̂β(ŷk−1) +

∆t

4ε

∞∑
n=0

‖gn+k‖2 < +∞.

In particular, rβk (∂yn+1, . . . , ∂yn+k) tends to 0 and since rβk is positive definite,
we have ∂yn+1 → 0 as well. We may therefore apply Lemma 3.3. If y? ∈
ω((yn)n∈N), we choose np → +∞ such that ynp+k → y?. By letting n = np tend
to infinity in (3.10), we obtain that ∇F (y?) = 0. This concludes the proof. �

Remark 3.5 (Uniqueness vs. stability condition). For k = 4 or 5, we have
2βk < 2 < αk. Thus, for k = 4 or 5, a gradient stable sequence which complies
with (3.10) is uniquely defined by its initial values. In contrast, for k = 1, 2 or
3, we have αk < 2βk, so if ∆t ∈ [αk/cF , 2βk/cF ), there may be several gradient
stable sequences with the same initial values [25, Section 3.5]. These remarks
are summarized in Table 1.

k 1 2 3 4 5 6
αk 1 3/2 11/6 25/12 137/60 49/20
2βk 2 2 95/48 1.62 . . . 0.371 . . . −2.74 . . .

Table 1. Uniqueness and stability numbers for BDFk methods

We will use the following result, which is a direct consequence of [4, Theorem
2.4] and  Lojasiewicz’s inequality for analytic functions [19].

Theorem 3.6 ([4, 19]). Let Φ : RM → R be real analytic. Consider a bounded
sequence (xn)n∈N in RM which satisfies the following conditions:
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H1: There exists a positive constant c1 such that for each n ∈ N,

Φ(xn)− Φ(xn+1) ≥ c1‖xn+1 − xn‖2;

H2: There exists a positive constant c2 such that for each n ∈ N,

‖∇Φ(xn+1)‖ ≤ c2‖xn+1 − xn‖.
Then the whole sequence (xn)n∈N converges in RM .

Theorem 3.7. Let 2 ≤ k ≤ 5 and assume that cF∆t < 2βk. If F : RN → R
is real analytic and if (yn)n∈N is a sequence in RN which complies with (3.7),
then the whole sequence (yn)n∈N converges to a critical point of F .

Proof. We apply Theorem 3.6 to the sequence xn = (yn, . . . , yn+k−1) with the

function Φ(xn) = F̂β(ŷn+k−1) where F̂β is defined by (3.12). Namely, if x =
(a1, . . . , ak) ∈ (RN)k, we have

Φ(a1, . . . , ak) = F (ak) +
1

∆t
qβk (∂ak, . . . , ∂a2).

Since F is real analytic and qβk is a polynomial, it is clear that Φ is real analytic.
The relation (3.13) shows that assumption H1 is satisfied (we consider here the

autonomous case (gn)n∈N = 0). Indeed, since rβk is positive definite on (RN)k, it
is equivalent to the Euclidean norm on (RN)k. The proof of Corollary 3.4 shows

that the sequence (ŷn+k)n∈N is bounded, and so (xn)n∈N is bounded. Since qβk
is quadratic, for each 1 ≤ i ≤ k, ∂aiq

β
k (∂ak, . . . , ∂a2) is a linear function of

(∂a2, . . . , ∂ak). Furthermore, the scheme (3.7) shows that ∇F (yn+k) is a linear
combination of

(∂yn+1, . . . , ∂yn+k) = ∂xn+1.

This shows that assumption H2 is satisfied and we are in position to apply
Theorem 3.6. The proof is complete. �

Example 3.8. Theorem 3.7 can be applied to a standard finite element dis-
cretization of the Allen-Cahn equation (1.1) with the quartic potential (1.2)
and Neumann boundary conditions. In this case, the constant cF associated
to the discrete version of the energy (1.3) is equal to 1/ε2 since [4, Proposition
5.1]

f ′′(s) = (3s2 − 1)/ε2 ≥ −1/ε2.

Thus, the condition on the time step reads ∆t < 2βkε
2. Other examples are

the Swift-Hohenberg equation [14] or the Cahn-Hilliard equation [5, 8].

The convergence result of Theorem 3.7 can be generalized in several ways.
For instance, it is possible to consider the non-autonomous case (3.10). The
sequence (gn)n∈N is assumed to satisfy a condition which implies that (gn)n∈N
belongs to l1(N)N [14, Remark 3]. The BDF1 and BDF2 schemes have been
considered in [14] (see also [4, Scheme (4.4)]). In Theorem 3.7, it is also possi-
ble to require less regularity on F : the function F need not even be differen-
tiable [25].
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