Nearest Centroid Classification on a Trapped Ion Quantum Computer - Archive ouverte HAL
Article Dans Une Revue npj Quantum Information Année : 2021

Nearest Centroid Classification on a Trapped Ion Quantum Computer

Sonika Johri
  • Fonction : Auteur
Shantanu Debnath
  • Fonction : Auteur
Avinash Mocherla
  • Fonction : Auteur
Alexandros Singh
  • Fonction : Auteur
Anupam Prakash
  • Fonction : Auteur
Jungsang Kim
  • Fonction : Auteur

Résumé

Quantum machine learning has seen considerable theoretical and practical developments in recent years and has become a promising area for finding real world applications of quantum computers. In pursuit of this goal, here we combine state-of-the-art algorithms and quantum hardware to provide an experimental demonstration of a quantum machine learning application with provable guarantees for its performance and efficiency. In particular, we design a quantum Nearest Centroid classifier, using techniques for efficiently loading classical data into quantum states and performing distance estimations, and experimentally demonstrate it on a 11-qubit trapped-ion quantum machine, matching the accuracy of classical nearest centroid classifiers for the MNIST handwritten digits dataset and achieving up to 100% accuracy for 8-dimensional synthetic data.
Fichier principal
Vignette du fichier
2012.04145.pdf (909.05 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-03432449 , version 1 (17-11-2021)

Identifiants

  • HAL Id : hal-03432449 , version 1

Citer

Sonika Johri, Shantanu Debnath, Avinash Mocherla, Alexandros Singh, Anupam Prakash, et al.. Nearest Centroid Classification on a Trapped Ion Quantum Computer. npj Quantum Information, 2021. ⟨hal-03432449⟩
44 Consultations
99 Téléchargements

Partager

More